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THE DYNAMIC PLASTIC RESPONSE OF A TUBE
TO AN IMPULSIVE RING LOAD
OF ARBITRARY PULSE SHAPE

by

Carl K. Youngdahl

ABSTRACT

The problem of the deformation of a long, circular,
cylindrical shell made of a rigid, perfectly plastic material
and subjected to an impulsive ring load is solved for arbi-
trary pulse shapes. The principal resultof the investigation
is that the dynamic effect of the pulse shape is almost com-
pletely characterized byits associated impulse and effective
load (defined as the impulse divided by twice the mean time
of the pulse). This is to say that details of the pulse shape
and, in particular, its peak value are comparatively unim-
portant in determining the history of the plastic deformation
and the final shape of the shell. The implications for experi-
mental work are encouraging, since the impulse and effective
load are easily computed from a pressure-time plot andare
not strongly influenced by experimental inaccuracies.

INTRODUCTION

In nuclear-reactor safety analyses it is frequently important to esti-
mate the plastic deformation of pipes and tubes in the reactor produced by
small chemical, mechanical, or nuclear explosions. For example, proof
tests of fuel-element prototypes are carried out in experimental loops in
special testing reactors in which the fuel elements to be tested are deliber-
ately caused to fail. It is necessary to predict the extent to which the
resultant localized release of energy will distort the test loop if damage to
the reactor itself is to be avoided. Another example of reactor analysis
pertaining to plastic distortion of tubes is the case of a coolant-flow block-
age producing a localized fuel-element failure. The impulsive pressure
may damage the fuel-assembly can, and this may lead to a more serious
accident or, at the least, may jam the can into its neighbors, creating re-
pair and removal preblems.

The nature of the energy-release phenomena in these applications
is usually only crudely known, and out-of-pile simulations mockup only part



gurations of a reactor. Conse-

of the complex nuclear and structural confi A & of the time-shape

uently, it would be advantageous to know what : vic deTbar
zf an iinpulsive load are important in determining the final plas

: i i e should know
tion of a tube; in particular, for exper1menta1 a.pphchathzéa(i)ll'led Wi
what scaling and equivalence laws may be used and how

rate pressure-time measurements must be.
: 1
a rigid-plastic material, Symonds

compared the final deformations produced by tr1angu1?.1;1, tshl:ussac:iai;ta:;d
rectangular pulse shapes and postulated that pulses Wg he S
impulse and peak value had approximately thfe same effect. . g ,iv i
ever, found for a reinforced circular cylindrical shell that this equ ; v
was reasonably adequate if the yield load was greatly exceeded, bufvt ad. e”
final deformations were strongly dependent on the pulse'shape for "medium
values of the load, which are of the same order of magnitude as the collapse
load. In particular, he showed the deformation produced by an exponen-

ying pulse, which is a reasonable approximation to an actual ex-
oduced by a rectangular

For a free-free beam made of

tially deca
plosive load, differed significantly from that pr

pulse with the same impulse and peak value.

This report shows that, for a long, circular cylinder made of a.rigid
plastic material and acted on by an impulsive ring load, the final plastic
deformation is almost completely determined by the impulse and effective
load associated with the pulse. The effective load is defined as the impulse
mded by twice the time-mean of the pulse (the time-mean being the length
of the interval between the time at which yielding occurs and the centroid
of the pulse shape). This correlation has been found to be valid for expo-
nentially decaying, triangular, rectangular, ramp, multisaw-toothed, and
other widely varying pulse shapes. Both parameters are easily determined
from experimental pressure-time graphs, in contrast to the measurement
of the peak load, which is strongly influenced by transducer inaccuracies.

The dynamic plasticity problem treated here has been solved by
Eason and Shield® for the special cases of a rectangular pulse, for which
they obtained a closed-form solution, and a triangular pulse, which they
treated numerically. Their work is extended here to the consideration of
arbitrary pulse shapes. An elaborate computer program was devised to
numerically solve the resulting sets of coupled nonlinear differential equa-
tions for any pulse-shape input. However, if the error involved in applying
the two-parameter correlation is acceptable (and it is apparently less than
the errors made in idealizing the material behavior), a semigraphical pro-
cedure may be used in place of the computer analysis.

The basic equations for the plastic deformation of a long tube acted
on by an impulsive ring load are derived in Ref. 3 in considerable detail.
A condensed version of this derivation is given in the next section to make
this report reasonably self-contained.



GENERAL EQUATIONS

Consider a long, circular, cylindrical tube, made of a rigid, per-
fectly plastic material and loaded by an internal pressure P(Z,T), where
Z and T are axial coordinate and time. The usual shell-theory assump-
tions are employed such that stress distributions across the shell thick-
ness are replaced by their resultants per unit circumferential length as in
Fig. 1. The equations of motion of the shell can be expressed in terms of
the axial bending moment M, the radial shear force Q, the circumferential
force N, the radial velocity V, and the radial displacement U. Define
dimensionless quantities by

Lk L LTI _ aM
(RH)VZ To o HT§ Oyiile o H?
(1)
1/2
e s SR i p s IR
o H oyl-l’/z oyH

where R and H are the radius and thickness, of the shell as shown in Fig. 2,
OK and p are its yield stress and surface density, and T, is a time interval
cha

racteristic of the problem under discussion.’ The equations of motion
are then

%3=p_n_%l%x:_=4q’ and%‘::v. (2)

with all dependent variables being functions of z and t.
»

113-1880 113-1885
Fig. 1. Stress Resultants on Element of Shell Fig. 2. Circular Cylindrical Shell
Subjected to an Impulsive
Ring Load

*Any value of To may be chosen, since the results are plotted so as to eliminate this quantity.



8 : A of
To obtain a concentrated ring load, let the EEson of ji:licaj:em;f i
the internal pressure shrink to the plane Z = 0, maintaining
resultant force as a function of time. Then
(3)
P(Z,T) = ¥(T)s(z),
where & is the Dirac delta function. The dimensionless ring-load magnitude
¥(t) is defined by
‘I’R”Z (4)
el 20,172

Some quantities of interest associated with ¥(T) are the impulse I per
unit circumferential length and the time mean Ty, of the pulse, defined by

Tt
I =/ () Sy
a5

1 [T
T/ (= Ty) W), (5)
Ty

and

H
8

where Ty and Tf are the times at which plastic deformation begins and
ends. It is proposed that the parameter that, along with I, best charac-
terizes the effect of the pulse; is the associated effective load Y. defined

by '
I
< e (6)

Let the dimensionless counterparts of I, Tp,, Y, Ty, and T¢ be given by

: IRV? i )
V% 29T T t ¥(t) dt,
y
Tm 1 L5
tm=—o='{/ (t-ty) ¥(t) at
ty
\
(7)
w S IRl/Z g i
e 4TmoyH37Z = Ztm )
T 1
£
ty = —z, el §
y T, and tf Ty J



Assume the yield condition in m,n space to be given by the limited
interaction curve of Fig. 3. (The relation of this ideal square curve to the
true yield condition, is discussed by
Drucker* and Hodge.®’) The relevant
points of the yield curve for this problem
A ! 8 are on the side AB, including the end
points, such that n = +1 throughout the
plastic region. Since the strain-rate
vector, which has components propor-

: I ST tional to azv/5zZ and v, must be normal
W to the yield curve, it follows that the
radial velocity v must be positive and
o - c that
2
113-1883 -0 (8)
dz?

Fig. 3. Limited-interaction Yield Condition
at shell sections that correspond to inte-

rior points of AB. Hinge circles occur at sections of the shell for which
m = *1; they correspond to points A and B where the strain-rate vector
can have any direction between the limiting normals, implying the possi-
bility of a discontinuity in the velocity slope av/az. If a hinge circle
spreads over a finite axial region of the shell, a hinge band is formed in
which m has the corresponding extremum value and azv/azz may have any
value compatible with the yield condition.

The static collapse load for a long shell acted on by a circumfer-

ential ring force is found in Ref. 4 to be
-

3/2
ZoyH :

Y. =
o RY2

9)

For a dynamically applied load whose maximum value exceeds the collapse
load, plastic deformation begins when (by Refs. 4 and 9) ¢ first exceeds
unity. Hinge circles initially occur at z = 0 and z = #1. During the sub-
sequent motion, the outer hinge circles occupy the positions z = +{(t) and,
for some load-time functions, may expand into hinge bands in the regions
E(t) = |z | =n(t). We consider first the deformation history up until the

time when hinge bands first appear.t

In the region 0< z < {(t), t Zty, we have (from Eq. 8 and Fig. 3)
that

v(z,t) = volt) [l - C(Lt)] and n(z,t) = 1, (10)

*As shown in the section on Solutions, a hinge band cannot appear instantaneously at t = ty even if an
instantaneous jump in the load occurs there,
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The first of Egs. 2 can then be

where vo(t) is the radial velocity at z = 0.
written
1+l
g—;l & sl (61 [E]s (11)
with C, and C, defined by
e s e L) (12)
T TR 2 dt

The integrations of Eq. 11 and the second of Eqs. 2 with respect to z

result in
q = 32%C,(t) - 2G,(t) + Cs(t),
and (13)
m = 223C,(t) - 222C,(t) + 42C;(t) + Cylt),
for 0 = z = £(t), t =ty
The boundary conditions on m are (using Fig. 3)
m(0,t) = -1, m(Ct)0 =+, (14)

while ¢ = 0 at z = { where m has its maximum and q has a discontinuity
of 2¢ at z = 0 because of the concentrated load there. Applying these

boundary conditions to Eqs. 13 gives four relations for C;, C,, C;, and Cy,

whose solution is

G = FWL-1),

C. = gz (4vL-3),

C, =¥, [ (15)
and

i )

Using Eqgs. 1.0, 12, and 15 and the third of Egs. 2, we arrive at the set of
coupled nonlinear differential equations



. P iET Sl
z ’

dt 5
at _ -2yt+3-¢2
dat vol )
and r o
du. v(l-) 0=z=to,
= 0, z > C(t)x

subject to the initial conditions
vo(ty) =005 C(ty) =1, and u(z,ty) =90 (17)
Since m is a cubic in z, satisfies the boundary conditions

(Eqs. 14),and has a horizontal tangent at z = [, necessary and sufficient
conditions that |m| <1 in the interval 0< z < { are that

aa_r:?_o (18)
at z = 0, and

2

%so (19)

at z = {. The slope of m at the origin is d/(t).'Since Y%(t) is assumed to
be nonnegative, the first of these conditions is always satisfied. This im-
plies that a hinge band' cannot form in the vicinity of z = 0. By Egs. 13

and 15, the Inequality 19 is equivalent to

Yy =3/2. (20)

For some load histories, the deformation behavior is such that at
some time t = t,, say, while ¥ is increasing,

1A (21)

At this instant, the hinge circle at {(t) begins to broaden into a hinge band
in the region {(t) =z =7(t). The hinge band continues to broaden until
t = tM when ¥ reaches a local maximum ¥)\. As ¥ decreases, the hinge
band contracts, until { and 7 coincide at some time t, when Eqgs. 16 are
again applicable. If ¥ has a number of peaks, the hinge band may not

11t is shown in Ref. 3 that a hinge band can form at the origin if the load is axially distributed, rather
than concentrated.

11
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i in to expand as ¥
completely disappear between adjacent maxima, but begin 12!
passes through the intervening minimum.
ial vel
During the existence of the hinge band,.t:he'shel}l3 radia
the region 0 =z = t(t) is still linear in 2, but is given by

ocity in

g (22)

Z
v(z,t) = volt) - [volt) - v£®)] 7y

at z = £. The solution to the first two

i i it
where Vc(t) is the radial velocity T il 14, e and C,

equations of Egs. 2 is still given by Egs.

are defined as

0. = ¥ 4 dvo. (23)
C1=a—t C,andCZ—l‘th
In the region {(t) =z = n(t),
(24)

M=l g a0 and nti=n

so that the solution to the first two equations of Eqs. 2 is

v(z,t) = -t +Q(z), (25)

where ((z) is an arbitrary function determined by the deformation. Since
the radial velocity at the outer end of the hinge band vanishes, we have

that
(26)

while by definition of Ve

| i + Q(¢). (27)
It is shown in Ref. 3 that in the interval t, =t =ty the inner edge
of the hinge band { is related to ¥ through Eq. 21. The pair of nonlinear
differential equations obtained from Eqs. 23 and 15 can then be solved for
vo(t) and vg(t). Moreover, since ¥ is increasing in this time interval, {
must be decreasing; that is, the inner end of the hinge band moves toward
the origin. As it does so, the function { is generated through Eq. 27. The
outer end of the hinge band 7) is then determined by Eq. 26. In the interval
tpM=t =<t,, { and ¥ are no longer related by Eq. 21, but { now increases
with time so that it sweeps back through positions z for which { is known.
Consequently Eqs. 23, 15, and 27 give three equations for the deter-
mination of €, v,, and ve, while 7 is still found from Eq. 26.7 Since Cis

T1t is easily shown that Q is a decreasing function of z so that, by Eq. 26, N must be a decreasing function
of time. Consequently, n passes through positions z previously occupied by & for which §2(2) has been
determined.



increasing and 7) is decreasing, they eventually coincide and the hinge
band reverts to a hinge circle.

A function  must be determined for each hinge band if more than
one occurs for a ¥ function with several peaks. If between adjacent peaks
the hinge band begins expanding again, rather than degenerating to zero
length, the function 2(z) must be redefined at locations that are passed
through by £ a second time.

A closed-form solution for vo, v¢, £, 7, and @ during hinge forma-
tion and motion for arbitraryt %(t) is derived in Appendix A. However, in
obtaining results for the shell deformation, we decided that solving the
differential equations numerically was probably no more difficult than nu-
merically evaluating the transcendental equations of the closed-form solu-
tion and could be adapted more readily to the solution of multiple-peak
problems.

SOLUTIONS

A numerical solution of the coupled set of nonlinear differential
equations (Eqs. 16) and the set, for hinge-band motion, given by Eqs. 15,
22, 23, 25, 26, and 27 was programmed for the CDC-3600 computer for an
arbitrary load-time function %(t). The program and auxiliary subroutines
are given in Appendix D. The inputs to the program are the function ¥ and
the time intervals and axial positions at which results are desired, the out-
puts are radial velocities and displacements and hinge-band locations. The
Bulirsch-Stoer method of extrapolation by rational functions was used,® an
initial power series being employed to facilitate'the start of the solution.
(See Appendix B.)

A closed-form solution may be obtained for a rectangular pulse
shape. Let ¥ be given by

o Py I e )
(28)
0, T,

¥

At t = 0, the hinge-circle location jumps instantaneously from its yield
location at z = 1 to the position z,. During the interval 0< t =7, the hinge-
circle location remains fixed while v, is a linear function of time. From
Eqgs. 16, we have, for 0 <t =T,

L(t) = zo, and vo(t) = Kt, (29)

T The particular case of this solution for ¥ a triangular peak is presented in Ref. 3.

13
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with

gl = (7//;/1“'3)[/2 - UM
and (30)

K = &—zﬁz'

Zo
The solution to Eqs. 16 for any ¥(t) that vanishes after some time 7 is
given by
2
SR A s (31)

t
C—A?+B, Yo T AC ’

where A and B are found from the values of { and vy at 7. By Eqgs. 29

and 30, for the rectangular pulse,t

(3‘25) Zo
A = ———— B = - A.
3(1_25) and Zo (32)
From Eqgs. 16 and 29-32, the radial displacement is found to be, for
(=A==
! = 2
n(z,t) = >K e —ilite L0005 <5
Zg
(33)
= 0 z > 2z,
while, for t > T,
(= o) e z 1 k1 )
T2an l-Z_o +A—z E[ZO'C(f)][Zo‘rC(t)-Zz]
E(t) 1 1
St ey = —_— - —
og = + 3z C(t) = 05z_<_zo;
ol 1 (34)
= a7 {-3lt)-2F + 310 28 4 3[@ ! 1]} [
zo< z =¢;
=H0p Rt J

+
The results (Eqs. 29-32) are presented in Ref, 3, in somewhat different form.




with {(t) and A given by Egs. 31 and 32. The plastic deformation ends
when v, vanishes, which, by Eqs. 31, occurs at a time ty when

Litg) = V3. (35)

Letting ugf be the radial displacement at z = 0 and t = tg, we have, from
Eqs. 29-32, 34, 35, and 7, that

£ _ \/-- B
T T AYM
and r (36)

1
=i =‘—z‘_z‘(zoA + 3 log ﬁ)
i U/MA Zg

7

Note that, for the rectangular pulse,
Ve = ¥ (37)
It is easily shown that
¥zo < 3/2, (38)

so that no hinge band is produced by a rectangular pulse. The same is also
true for any pulse shape that increases instantaneously from zero to its
maximum value ¥ g and then decreases monotonically from that point on.
The initial instantaneous value of [ will be zg, given in Eqgs. 30, for which
Eq. 38 holds, and a hinge band can only be initiated when ¥ is increasing.
However, if the pulse shape is such that the shell is already in motion when
a positive jump in ¥ occurs, a hinge band may appear instantaneously. Con-
sider a time t; at which £ and v, have the values {; and vy, and at which
¥ jumps from ¥, to ¥pp, where Y0, exceeds 3/2. Let primes denote quan-
tities just after the jump. Then,

"); =Ly C; e Z_’I/?;\_ri-' vor = Vou, VICI = Voi ( -%),
(39)

%

and  is a linear function of z in the range £, =z = {,. In Appendix C,
these results are obtained by considering the series solution to the differ-
ential equations at some time t, and finding the appropriate limits as At
vanishes withAy remaining fixed.

QC,) = t, and AL}) = t; +v

15
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RESULTS AND CONC LUSIONS

ults of some of the parameter studles..
lse shape was discussed in the previous
d exponential-decay pulse shapes

Figures 4-6 show the res
The solution for the rectangular pu
section; the linear-decay, triangular, an

are given by

Linear Decay
et o

= -i = i =07

Y= YM (1 T), 0 -
= 0, t >

Triangular

w:sz;—, 0=t=4im
= 2YM (l--;:), ST ST (41)
=0, >

o
10 125 15 2 25 3 4 5 6 7 8 9 10

113-1881

Fig. 4. Final Deformation as a Function of Peak Load for Rectangular,
Triangular, Linear-decay, and Exponential-decay Pulses.
Points a, b, and c are the results of problems a, b, and c.
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RS I I T I I I
EXP
TRI
25— LIN —
ey RECT
20— N =
s i
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a
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10 125 15 2 25 3 4 5 .
%
113-1887
Fig. 5. Final Deformation as a Function of Effective
Load for the Same Pulse Shapes as Fig. 4
I I I I I I I
114 p—
EXP
RECT
Lgp— LN ™ e
<
110 |— o -
<
108 — =3
106 — —
0=,
104 — —
102 |— =
i ey I et ] | |
10 1.25 15 2 25 3 4 s 6
)
113-1882

K

ig. 6. Duration of Plastic Flow as a Function of Effective
Load for the Same Pulse Shapes as Fig. 4



18

Exponential Decay

(42)

¥ = ¥ exp(-t/T), O =t<e

acement at z = 0 divided by

tion of the peak load ¥M and
quating the effects

s. 4 and 5, the final radial displ
ted as a func
gure 4 shows that e

InsRp
the square of the impulse is plot

the effective load Y, respectively. Fi :
of pulses with the same impulse and peak load would lead to large relative

errors, particularly when YM is close to the yield load of unity. On the
other hand, the bunching of the curves in Fig. 5 show§ that pulse shapes
with the same impulse and effective load have essentially the same effect,
to well within the errors inherent in the assumptions of the problem. More-
over, the curves converge closely as the yield load is approached.

ls in Eqs. 7 have as their limits ty and tf, the times

The integra
nds. The initial yield time is easily

when plastic deformation begins and e
determined from a knowledge of ¥(t); however, tf is not known a priori
since the motion may cease before the end of the pulsefr Figure 6 indicates
that (tf- ty)/i is a weak function of ¥ . Consequently, given an arbitrary
pulse shape, tf can be estimated and i, ty,, and ¥, computed using Eqs. i
For these values of i and Ve, a new value of tf can be found from Fig. 6.
Then revised values of i, tm, and ¥e can be computed and the procedure
repeated until convergence is attained. Very few iteration steps have been
found to be necessary, because of the insensitivity of the value of (tf- ty) i
g obtained i and Y. We can find the final plastic deformation

to 9. Havin
5 and the appropriate deformation history from the

approximately from Fig.
closed-form, rectangular-pulse results (Eqs. 29-36).

Since the semilog plot of the final deformation for a rectangular
pulse is very nearly a straight line (as shown in Figs 4 and 5). we can ap-
proximate Eqs. 36 for rough calculations by

u
,1°2f 1.405 log Y ~
(43)

IEZ 06 og/es

l
1

u

Figures 7, 8, and 9 show %, {, 7, and u, (the radial displacement
at z = 0) for three irregular pulse shapes, which produce extensive hinge-
band motion. The final radial displaceménts and duration of plastic flow
for the problems are identified in Figs. 4, 5, and 6 as points a, b, and c.
These results and the results forf many other problems not discussed here
cluster close to the curves in Figs. 5 and 6.

+ 2 ]
I{l the results included here, this occurs for all the exporential-decay pulses, of course, and for the
linear-decay and triangular cases with Y, close to unity.
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1.6 =
14 il
1.2 g
Tg 1.0
ke = .
2L Fig. 7
E Problem a: Load y, Hinge-circle and
=" 0 i -band Location C andn, and Central De-
2 formation u, (i =4.833, yy = 3,
> =
ok ] Ve = 1.589)
04 s
0.2 —
o 2 3 4
b ° ¢ 113-1886

Fig. 8

Problem b: Load y, Hinge-circle and -band
Location g and ), and Central Deformation
u, (i =27, Yy =6, Y= 3.627

113-1879 S = % 8 s 30
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Fig. 9
Problem c: Load i, Hinge-circle and
-band Location Z and n, and Central De-
formation u, (i = 24.875, Y = 1.5,
Yo = 4.527)

30
113-1878

Figures 10-12 show the radial deformation shapes as a function of
dimensionless axial position at various times for problems a, b, and c,
respectively. On the figures, Tf is the time at which the pulse ends.

We have, from Eqs. 1 and 7, T | I I
that 07 =
3/2 98 7
¢ = —ZOYH I te /i =1.1205
R T T 05 L —
f T, /i =0.8276
v v . 04 =
T 2p~RH T’ (44) S
203 =
and
0.2 =
u 9]
— = 4poyH? = .
2 POy H! 2 o _
Therefore, scaling the variables by S e 06 oa Fliohen I,_,
the appropriate power of the im- z
p.ulls'e e.llmmates t'he arblt.rary mul- 113-1884
tiplicative factor u'1 the time scale, Fig. 10. Problem a: Radial Defor-
represented by T, in the nondimen- mation as a Function of
sionalization and T in the problem Axial Position for Various

statements. Times (ty/i = 0.0690)
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Fig. 11, Problem b: Radial Deformation as a Fig. 12, Problem c: Radial Deformation as a
Function of Axial Position for Various Function of Axial Position for Various

Times (ty/l =0) Times (ty/i = 0)
-
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APPENDIX A

Closed-form Solution for Hinge-band Deformation

A closed-form solution to the differential equations that determine
the hinge-band motion in the vicinity of a peak of the pulse can be obtained
as follows:

Assume a hinge band begins to form at some instant t;, when ¢, €,

and v, have the values ¥;, {;, and vo;- The pulse increases to a peak
value ¥\ at tpf and then decreases to some value ¥, at t, when the band
degenerates to a hinge circle. Let 7//“1 denote the inverse of ¥ for

t; = t=tpy. Define

3 3
3)1_57(5—. (A

and

9 o

1. Interval t; <t =<ty

ap Since ( is related to ¥ through Eq. 21 in this interval, { can
be eliminated from Eqs. A.2, resulting in simple linear differential equations
for vy and vt; their solution is

-

t

vo(t)i=tvy, - (t-t;) +i Y2 dt,
3/t

and {, (A.3)

v(t)-L[z// 4ft 3
0 ) 1Vo1 +? t17// il

making use of the initial conditions at t,. Since £ and vr are known from
Eqgs. 21 and A.3, Qs found from Egs. 27 to be :

velt)

J

Al = z 4 ”(z). Z ,u(z)
Qz) = t, t Vo (l-a) +3—'/;1 Y2 dt - 89— t Y3 dt. (A.4)

A . ;
transcendental equation for 7) is then obtained from Eqs. 26 and A .4.
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2. Interval tpq< t=t,

The function {2, as given by Eq. A.4, is still used with Eq. 26 to
find 71 and, with Eq. 27, yields the following relation between ve and C:

wt g 4 ru()
(t) —-(t-t)+ (1-_>+_ 'd/zdt
v 1 Vo1 7 3 '/t‘l

gt [ H(E)
1 P dt.

(A.5)
t

The function vy can be eliminated from Eqs. A.2, resulting in a pair of
nonlinear equations for v, and . Define an auxiliary function F through

B.=:L%, + (£2-3) ¢. (A.6)

From Eqs. A.2, A.5, and A.6 we arrive at

H(E)
. [2(t1+v°1) t:+$—3C ft, Y2 dt] %, (A.7)

which can be integrated to give

F = (t;+vey) - 3u() + = /t Y% dt +C. (A.8)
K 1

Solving Eq. A.6 for vy and using Eq. A.8 with th continuity conditions at
tp, we obtain

3 4 [HO) .
vo(t) = voy - (t-t;) +Ez[t-y(5)] +-3—ft, Y2 dt. (A.9)

The substitution of Eq. A.9 into the first of Eqs. A.2 then gives the following
differential equation for (:

%[t-p(c)]gfuw-%: 0. (A.10)

Equation A.10 can be written as a perfect differential having the standard
form

X(g,t) al + Y(L,t) dt = O, (A.11)
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with

5 3 0X _ oY
= = [t- . =.2 -—,and =— = =% A.l2
X £z [t-p(€)] Y Y(t) € SLLC ST dC ( )
Consequently, following the usual integration procedure and applying the
continuity requirements at t)g, we arrive at the transcendental equation
relating £ and t,

t
3[u(€) - t] +2Cfu(g)?/fdt = 0. (A.13)



APPENDIX B

Local Series Solution of Differential Equations

The computer program RINGLOAD uses series solutions to the
coupled nonlinear differential equations (Egqs. 16) in the vicinity of ty and
tf, since vy vanishes at these times and the second of Eqs. 16 becomes in-
determinate. The series solution at t = t,, is used to start the computer
computation by calculating results at t =ty +5t. The subroutine DIFSUB,
which uses the Bulirsch-Stoer extrapolation method, is used to carry the
computation forward until either the pulse ends and the closed-form solu-
tion (Eqs. 31) is applicable or the velocity v, becomes small. In the latter
case, a series solution is then used to bring the calculation up to the final
time tf at which the motion stops.

Consider a time t* when all the dependent variables are known
quantities, and let t* + 5t be a time when values of the dependent variables
are desired. Assume Ot is small enough that power series solutions of
Eqgs. 16 in 0t are convergent. Define the auxiliary function vauyx by

Vaux(t) = X&(:_)). (B.1)

so that

v(z,t) = volt) - zvayux(t), 0=z ={(t). (B.2)
Let -
Y(ex +6t) = Y piet), y
j=0
C(t* +ot) = z aj(®
pEn
n _ (B.3)
vo(t* +5t) = ) bj(6t)),
g0
and
n
aux(t* +6t)= Y c;(st)
j=0

25
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where
* = Vauxlt) = 2% (B.4)
po = Y(t*), ag = L(t*), by = vo(t*), and co = Vaux 5, :
From Eqs. B.l and B.3 and the third of Eqgs. 16, the series for the radial

displacement is then given by

g Il J 11
u(z,t* +6t) = u(z,t*) + Z:O (bj- ch-) (ftl T
J:
0 =z =CE(t*+6t), r (B.5)
and
u(z,t* +6t) = u(z,t*), z > E(t* +6t). )

The series for 7 is assumed to be known from the given load-time
function. From Egs. B.l and B.3, the coefficients of the series for Vaux
are given in terms of the coefficients of the series for £ and v, by

chi = ;; by - & ajcn-j . (B.6)

Substituting from Eqgs. B.3 for ¢, {, and v, into the first of Eqs. 16 and
equating coefficients of like powers of 6t, we obtain the following relations:

aghoa; +a% + 2agpp - 3 = 0,
2agbga, + boaf + aga,b, + 2apa; t 2ajpg + 2a0p; = O,
3agboaz t+ 3boaja, + 2agbja, + a?b, + apajb, + 2apa,

)

+af + 2a,p, + 2ap; + 2agp, = 0

»

4agboay + 4bgaja; + 3agbja; + 2bgal + 3a\bja, + 2a¢a,b,
2
taib, + agajb; + 2aga, + 2a)a, + 2a3pg + 2a,p; L (B.7)

t2a)p, + 2agp; = 0,

and
5agbgas + 5boa,a, + 4agbya, + 5bpa,a; + 4a;bja; + 3agbyas

2
+ 2bja$ + 3aja,b, + 2agazb; + alb, + aga by + 2agay

2
t2aja; +a% + 2a4pg + 2a3p, + 2a,p, + 2ap; + 2agpy = O. J



The application of the same procedure to the second of Egs. 16 gives the
following relations:

adb, +ad - 4agpg +3 = 0,
adb, + aga;b, + apa; - 2a,pg -2app; = 0,
3a§b3 + 4aga,b, + 2agbja, + afbl + 2aga, + a? - 4a,p

- 4a;p; - 4a¢p;, = 0,
2ab, + 3aga,b; + 2aga,b, + alb, + agbya; + a;bja, + apa;
r (B.8)

+aja; - 2a3pg - 2azp) - 2a,p; -2a¢p3 = O,
and
5adbs + Baga by + baga,b; + 3alb; + 4agasb, + 4a,ab,

+ 2agbja, + 2a;bjay + bjal + 2a¢a, + 2ajay + 2a2

- 4a4po - 4a3p) - 4a,p, - 4a;p; - 4acps = 0.

J

At the beginning of the deformation, when t* = ty, the shell is at
rest, so that vo(ty) = 0. If y passes gradually through the yield value of
unity, the initial hinge-circle location is C(ty) = 1. However, if § jumps
instantaneously through yield to a value ¥ ) greater than unity, then
C(ty) = 2zo given by Eqs. 30. Consequently, the two possible initial cases
for t* = ty are -

bo = Co = 0, ap = Po < | (Bg)

and
by = co = 0, po = UM 30 =S¥y +3 - U (B.10)

The remaining aj and bj coefficients are found from Eqs. B.7 and B.8 tobe

-

-1
by = :5 (ad - 4agpo *+3),

2

a, = _ak°_lP_l, % (B.11)(Contd.)
-1

e ST [aoay(by+ 1) - 2(aypo +aopy)],

o
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iia %[aoalbz+a%(bl+l) + 2(a;p; +20p2)];
2

=l 2 1) =4 +a p1+3opz)]s
L s [4agarb, + (202, +ai)(b1 t - SR

ay = T:—[aoale + (2agap +a}) by + 2122301 +2)
3

i Z(azpl +a;p2 +aop3)]1
= 1
by 2_:%[33031b3 + (2a0a, +2f) b2 + (2023 +2,2,)(by +1)
L(Contd.)

z Z(«""3?’0‘*‘2‘-2}’1"’alpz).+?=lol33)]x (B.11)

[apa by + (22022 +a?) by + 3(a02s +aja,) b,

&=

ay
+ (2a,a; +a2)(2b; +1) + 2(asp1 Tazp2 T21P3 +aops)]s

and

-1
bet= = [8aga by + 3(2a02, +a2) by + 4(agas t2,a;) b,

+ (2agay +2a,2; +a})(by +1)

-4(aypo +aspy + 22D, +21p3 T 20pa) ],

where

Ky = zla[ag (n-2) - 2agpy(2n+1) + 3nl. (B.12)

If the initial conditions are given by Eqs. B.9, the firstof Eqs. B.11 yields

b, = 0, so that the (6t)? terms are the first nonvanishing terms in the power
series for the velocity. Consequently, the numerical integration of the
second of Eqs. 16 is initially rather slowly convergent if ¥ gradually passes
through the yield value. On the other hand, b, ;( 0 for the initial conditions
(Egs. B.10), sothatproblems with an instantaneous jump at ty are easier to
integrate numerically near ty. This difference in the rapidity of conver-

gence near ty shows up as shorter running times for problems with an
initial jump.

If the shell is in motion at t*, then by # 0 and the five equations in
each of Eqs. B.7 and B.8 are easily solved for a,, ..., as and by, ..., bs,
respectively, in terms of values of the functions at t*.



In extrapolating to t = tg, we use the numerical integration scheme
until vy becomes small compared to its maximum during the deformation.
Let t* be the time at which this small value is attained and at which the
power-series coefficients are evaluated. Let

tf = t* + 6t¢,
and (B.13)
n .
volts) = 0= ) b;(6t),
j=o

where Ot is to be determined. We can approximate &t by

2b,

e
b, ++/b? - 4bgb,

(B.14)

The value of vy at t* + 0t is found from the power series, and if less than
some selected constant €, the computation is concluded. If v, is greater
than €y, the extrapolation procedure is repeated starting from the new
value.

29
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APPENDIX C

Solution Behavior in the Vicinity of Instantaneous Jumps in ¥

In the vicinity of instantaneous jumps in ¥, there is the possibility
of corresponding instantaneous jumps in the values of some of the depend-
ent variables. It would be advantageous then to use the numerical-
integration scheme up to the jump, make the appropriate change in the
values of the variables, and continue on with the numerical integration,
rather than trying to integrate through the jump, where the convergence of
the solution may be poor. A study of the local power-series solution for
the problem reveals that the dependent variables are continuous functions
if no hinge-band formation occurs. If a hinge band already exists or is
produced by the jump in 7, then a corresponding jump in { occurs.

At t = t*, let ¥ be such that

Y(t* +6t) = p, + p,6t

Y(t*) + o ()

We wish to determine what happens to the solution of the differential equa-
tions as &t - 0 with 6y kept constant.

Consider first the case when no hinge band exists and Eqgs. 16 are

appropriate. The series SOluthllS for c and Vo are given in l&ppendlx B.
By Eqs B.7 and BB, we can write

an = anopo t anip;,
and
(c22))
bn = bnopo + by,p;,

where ayng, ap;, bpg, s
and B.B,no n1» Pno, and by, are independent of Po and p,. From Eqs. B.7

apy = a = b, =i o] =
1 11 01 = g (€#3)

so that the series for ¢ ang Vo can be written

=]

i) = j
Llt*+6t) = g(t*) + ajobt + ; (2j0po tajip;)(6t)i,
J=2

and

XX

* -

vo(t* +6t) = vo(t*) + b6t + (bjopo +bjypy ) (5t)i. (C.4)
J=z



It is apparent then that

E(t* +6t) = L(t*), and vo(t* +6t) = vo(t*) as &t = 0, (C.5)
keeping p,6t constant. It is assumed in this analysis that

[w(t*) +69] Lt* +6t) =3/2. (C.6)

If Inequality C.6 does not hold, that is, if the instantaneous jump produces
a hinge band, the instantaneous jump may be decomposed into two parts by

PY(t* +6t) = po + py Ot' + py 6t",
and (C.7)

ot ot' + ot",

with 6t' determined from

(po +pi6t') L(t*) = 3/2. (C.8)

Letting 6t' = 0 carries the deformation up to the point of producing a hinge
band. The remainder of the instantaneous jump, produced by letting

6t" - 0 with p,' 6t" kept constant, then occurs while a hinge band exists.
This latter case will be considered next.

The governing differential equations when a hinge band exists are
Eqs. A.2. If ¢ is increasing, { is found from Eq. 21 and Q is determined

from Eq. 27, if ¥ is decreasing, Q is now a kndwn function and Eq. 27 gives

a relation between £ and ve: Define v,ux now by

Vaux(t) = 2ot -tV (t)’ (C.9)

and, as in Eq. C.1, let a jump of 6¥ occur in ¥ at t = t*. Employing a
similar series analysis to that used previously, we find for 6% positive
that vo, Vaux,» and 7) are continuous at t*, while { jumps to

3/{2[y(t*) + 6¥]} and the corresponding jump in ve is found from Eq. C.9.
The portion of Q generated by the jump in ¥ is given by

Qz) = vo(t*) - vaux(t*)z +t*

(c.10)

3
C(t*) =z = 2__—[w(t*) Tou
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On the other hand, if 8¢ is negative, then Vo, Vayux, V¢ £, and 7 are
continuous at t*.

Since 7, the outer edge of the hinge band, is always a continuous
function, the length of the region of plastic deformation is also a continu-
ous function of time and does not vary abruptly, even with severe load
changes.



APPENDIX D

Computer Programs

The dynamic plastic deformation of a tube acted on by a ring load
of arbitrary pulse shape is computed by the CDC-3600 program RINGLOAD
and its auxiliary subroutines DIFSUB,® DIFFUN, OMEGA, OMEGINV,
ZETAEQ, PULSEINF, PSIFUN, and PSICOEF. The subroutines
PULSEINF, PSIFUN, and PSICOEF are specialized to the particular form
of the pressure pulse; RINGLOAD and the other subroutines do not depend
on the pulse shape. Two versions of the set PULSEINF, PSIFUN, and
PSICOEF are given here. The Piecewise Linear Version treats pulses
that are specified by a number of t, ¥ pairs and uses linear interpolation

to obtain values of ¥ for times between the prescribed points. This version

can be used to handle any pulse shape by specifying a sufficient number of
data points, and its use is recommended for most problems. If, however,
a parameter study is to be made for a number of problems involving the
same general pulse form and this form is tedious to approximate by a
piecewise-linear function, it may be advantageous to write special subrou-
tines for the pulse form. This was done for the case of a pulse that rises
linearly to its maximum and then decays exponentially, that is,t

5
s (t- 7o) = :
V’-WM(TM_TO, lostsTM.
¢ (D.1)
= wMe-(t-TM)/T, TMS t = TR
»
:0, t D> To.
F J

The subroutines PULSEINF, PSIFUN, and PSICOEF for a pulse defined by
Eqgs. D.1 are given as the Exponential Decay Version. Problems of this
type can also be handled by the Piecewise Linear Version if an adequate
number of points on the exponential decay portion of the pulse are used as
input data.

The input needed for a computation consists of two parts: input for
the program RINGLOAD and input for the subroutine PULSEINF.

1. Input for RINGLOAD

Card 1. FORMAT (10A8)

Problem name or identifier (Anything may be punched on this card
and will be printed at the beginning of the output.)

T The quantities T % and Ty may be made equal to produce an instantaneous jump to the pulse maximum.
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Card 2. FORMAT (12, 2X, 12, 2X, I2)

ISCALE: If zero, results are not scaled. If one, results are scaled
by the appropriate power of the impulse 1, as explained below.

NTSINT: At/i = 1/NTSINT is the scaled time interval at which the

output is printed. NTSINT must be at least 10; 20 is a convenient value

for most problems.

NZINT: Az = l/NZINT is the axial interval at which radial displace-
ments are printed. NZINT must not exceed 25; 10 or 20 gives an adequate

number of points for a graph. If NZINT is zero, then z = 0 is the only
location at which the displacement is computed.

2. Input for PULSEINF. Piecewise Linear Version

Card 3. FORMAT (12)

NJ: Number of input data points. NJ must not exceed 99.
Eardsid, 55,0, 0 NJ 5 FORMAT (2E15.7)

TJ, PSLJ: Input data pairs tj, zj/j.

3. Input for PULSEINF. Exponential Decay Version

Card 3. FORMAT (5E15.7)

TAUO, TAUM, TAUF, TAU, PSIM: Parameters in puls shape,
To» T™M» TF» T ¥p» as in Eqs. D.1.

The printed output of the program includes first some general
parameters associated with the pulse shape, such as ty, b 1 e Uesmandithe
total area under the pulse curve. The values of tm, i, and ¥ that are
printed are based on integrals of the pulse from ty to the end of the pulse.
If the motion stops before the end of the pulse,t it is advisable to rerun the
problem, chopping off the pulse input values at approximately tf as given
by the first run;t then the integrals will be taken over the interval t, to tr
as required in Eqs. 7. For many problems in which the motion stops before
the end of the pulse, the pulse has decayed enough that the difference in the
values of t,,, i, and ¥, between integrating to the end of the pulse and
integrating to the end of the motion is negligible.

A statement announcing this is printed at the end of the output.
TH1f the pulse data input is cut off at exactly ty,
second problem run, Chopping at a time value
difficulty and is accurate enough for the param

there will be convergence problems in the final time step of the
equal to ty to the first few significant figures avoids this
cter evaluations.
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The output that gives the history of the deformation is t, ¥(t), uo(t),
vo(t), &(t), n(t), NOFNS, and u(nAz,t),n =1, 2, 3, ..., if ISCALE = 0; the
printouts are at intervals of At plus intermediate times when results are
calculated for program requirements. The quantity NOFNS is the number
of evaluations of the right sides of the differential equations and is an indi-
cation of the difficulty of convergence of the numerical integration
procedure.

If ISCALE = 1, the quantities printed are t/i, ¥, uy/i?, vo/i, L(t),
7(t), NOFNS, and u(nAz,t)/iz. The scaling by powers of i is such that the
arbitrary time constant T, appearing in Eqs. 1 is eliminated, as well as
the arbitrary factor in the time scale of the pulse, as indicated in Eqs. 44.

From Eqs. 16 we see that au/at is found differently, depending on
whether z is greater or less than {. In RINGLOAD, if a time step carries
£ past an axial position z where the deformation is desired, the program
interpolates back to find the time step for which { and this z-location
coincide; then each z at which the deformation is computed is either in-
side or outside of [ for the time step, and Eqs. 16 can be applied.

The function Q(t) mapped out through the use of Eq. 27 is stored
as a pair of vectors ZL(JZ), OMEGAL(JZ). Linear interpolation is used
to obtain values intermediate to those contained in the lists; that is, ) is
assumed to be a linear function of z between the stored values.



ﬁﬁﬁ(‘\ﬂﬁﬁnﬁﬂﬁﬁﬁnﬁﬂﬁﬂﬁnﬁ(‘!ﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁhﬁﬁﬁﬁﬁﬁﬁﬁﬁ

PROGRAM RINGLOAD

ON OF A CIRCULAR CYLINDRICAL SHELL

EFORMATI
i i ITH AN ARBITRARY PULSE SHAPE} PSI(T).

PRODUCED BY A RING LOAD W

AUXILIARY PROGRAMS REQUIRED ARE ANL LIBRARY SUBROUTINE D;FSUB
AND SPECIAL SUBROUTINES PULSEINF, PSIFUN, PSICOEFs DIFFUN,
OMEGA, CMEGINV, AND ZETAEQ.

RINGLOAD, DIFSUB, DIFFUN, OMEGA, OMEGINV, AND ZETAEQ ARE
GéNERAL ;ROGRAMS APPROPRIATE TO ANY PULSE SHAPE, WHILE
PULSEINF, PSIFUN, AND PSICOEF MUST BE WRITTEN FOR THE
PARTICULAR FORM OF THE PULSE. GENERAL PURPOSE VERSIONS OF
PULSEINF, PSIFUN, AND PSICOEF HAVE BEEN PROGRAMMED FOR THE
CASE WHERE PULSE VALUES ARE PRESCRIBED AT A SUFFICIENT NUMBER
OF TIME POINTS SUCH THAT LINEAR INTERPOLATION BETWEEN VALUES

IS PERMISSIBLE.

REQUIRED INPUT FROM DATA CARCS.

CARD 1. FUORMAT (10AB8)
NPROB -- PROBLEM NAME OR IDENTIFIER.

CARD 2. FURMAT(12,2X,1242X12)
ISCALE =- IF ZERO, RESULTS ARE NOT SCALEDe. IF ONE, RESULTS
ARE SCALED BY THE APPROPRIATE POWER OF THE PLASTIC IMPULSE.
NTSINT == L1/NTSINT IS THE SCALED TIME INTERVAL AT WHICH
QUTPUT IS DESIRED. NTSINT MUST BE «GEe. 10.
NZINT == 1/NZINT IS THE AXIAL INTERVAL AT WHICH DISPLACEMENTS
ARE DESIREDs NZINT MUST BE «LEe.25. IF NZINT=0, THEN 2=0 IS
THE ONLY LOCATION AT WHICH THE DISPLACEMENT IS COMPUTED.

PLUS INPUT REQUIRED FOR SUBRCUTINE PULSEINF.

PRINTED CUTPUT

T =-- TIME.
PSI(T) == PULSE VALUE.
U(B,T) == RADIAL DISPLACEMENT AT Z=0.

V(CG,T) == RADIAL VELOCITY AT Z=0.

ZETA(T) =-- LOCATION OF HINGE CIRCLE OR OUTER EDGE OF HINGE BAND.
ETA(T) == LOCATION OF INNER EDGE OF HINGE BAND.

NOFNS == NUMBER OF USES OF SUBROUTINE DIFFUN. (GIVES AN
INDICATICN OF THE RAPIDITY OF CONVERGENCE OF THE SOLUTION.)
U(Z,yT) == RADIAL DISPLACEMENT AT Z=N/NZINTy N=19293re0ee

IN THE BCDY OF THE PROGRAM, PHASE 1 REFERS TO DEFORMATION
WITH A HINGE CIRCLE AT ZETA, WHILE PHASE 2 REFERS TO
DEFORMATION WITH A HINGE BAND BETWEEN ZETA AND ETA.

DIMENSICN TMAX(50)4PSIMAX(5C),TMAXS(50),U(50),US(50)
DIMENSICN F(4),0F(4),FMAX(4),FF(4),RLTVER(4),NPROB(10)
DIMENSICON TJMP(5D),PSIJMP(5€C), TIMPS(50)UF(50),SPSI(4)
EONMUN/CCMDIF/NOFNS,KPHASEpTAUJMPqPJMP
OMMON/CCMOMEG/JOM, OMEGAL(10CL),2
1 READ 17C,NPROB ! e
IF(EOF,6C)2,3
28 SToPp
3 PRINT 171,NPROB
READ 172,ISCALE NTSINT,NZINT
ICALLpgghiilTZélgélp';YIELD'TUTIMP’PLASIMP'TMEAN'NOMAX'TMAXF
' NOJMP , TUMP, P
e e ' ' s PSIJMP,KSTOP)
4 PRINT 173,KSTOP
Gl =1



Ceswsssns DATA INPUT, PARAMETER DETERMINATIONS, AND ASSOCIATED PRINTOUTS

5
6
7

8

L5

16

11
12

Connn

Cunusn

7

Cuunn
18
19
20

21

IFLINSTUMP) 6,7

PRINT 174, INSTJMP

EFFLOAD=PLASIMP/(2.,0#TMEAN)

PRINT 175,TO,TF,TYIELD,TOTIMP,PLASIMP,TMEAN, EFFLOAD
TOS=TO/PLASIMP

TFS=TF/PLASIMP

TYIELDS=TYIELD/PLASIMP

TMEANS=TMEAN/PLASIMP

PRINT 176,TOSyTFS,TYIELDS, TMEANS

CO 10 K=1,NOMAX

TMAXS (K)=TMAX(K)/PLASIMP

PRINT 1775(K,TMAX(K),PSIMAX(K),TMAXS(K) K=1,NOMAX)
IF(NDOJMP.EQ.Q) GO TO 16

DO 15 K=1,NOJMP

TJMPS(K)=TJMP(K)/PLASIMP

PRINT 18Cs(KyTJIMP(K) PSIJMP(K)TIMPS(K),K=1,NOJMP)
CONTINUE

DTS=1.0/NTSINT

DT=DTS#PLASIMP

IF(NZINT)11,12

DZ=1+0/NZINT

60 ' TO 33

LZ=3.0

PRINT 178,DT,DTS,D2Z

CHECK SIZE OF SELECTED DTS
IFINTSINT.GE.10) GO TO 17
PRINT 179

G0 70 1

CHECK SIZE OF SELECTED DZ
IF(NZINT.LE.25) GO TO 18
PRINT 181

GO -TO 1

PRINT OUTPUT HEADINGS
IF(ISCALE)19,20

PRINT 182

IF(NZINT) PRINT 183 .
GO TO 21

PRINT 184

IFINZINT) PRINT 185
CONTINUE

Cesswnssus INITIALIZATION OF ULZ,T)

22

NZTOT=1.73205*NZINT
DO 22 1Z=1,NZTOT
UtIz)=0.cC
US(I1Z2)=0.2
CONTINUE

Cewwanses [NITIAL VALUES AT TYIELD

23
24

25
26

UD=UD0S=VC=V0S=UAUX=VAUX=0.0

NOFNS=0

PSIO=PSIFUN(TO)

ZETAD=1.0

IF(ISCALE) GO TO 23

PRINT 187,T0,PSIO,U0,VO,ZETAC,NOFNS
GO TO 24

PRINT 187,T0S,PSI10,UDS,V0S,ZETAO,NOFNS
PSI=PSIFUN(TYIELD)

IF(INSTJMP) GO TO 25

ZETA=1.0

GO TO 2¢

ZETA=SQRTF(3.0+PSI##2)=PSI

IF(ISCALE) GO TO 27

37



38

27

PRINT 187.TYIELD,PSI.UO,VO.ZETA;NDFNS
PRINT 19C,(U(1Z),1Z=1,N2TOT)

GO TD 28
PRINT 187.TY1ELDS,PSIvUOSyVOS,ZETAvNUFNS

PRINT 190,(US(1Z2),12=1,NZTOT)

gt A e TI NEAR TYIELD

Cessvsssx SOLUTION BETWEEN TYIELD AND Tl

Cenns
Coexn
Cusnsn
Cuonnn
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Couns
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1

1

USE POWER SERIES SCLUTION OF DIFFERENTIAL EQUATIONS NEAR TYIELD.

CALCULATE COEFFICIENTS IN POWER SERIES EXPANSIONS.

ZETA = AC + Al¥D + A2%D##2 +eesy D = T=TYIELD

VO = BD + Bl#D + B2#D##2 +..0

VAUX = CC + C1l#D + C2#D*#2 +.0.

PSI = PO + P1#D + P2#D##2 +...

CALL PSICOEF{TYIELC,SPSI)

PG=PSI

P1=SPSI(1)

P2=SPSI(2)

P3=SPSI(2)

P4=SPSI(4)

AG=ZETA

BC=C0=0.(

Bl==(AQ##2+3,0=4,0%A0N%P( ) /AC==2

Cl=B1/AQ

Al=-2.0#A0#P1/(Bl*AD+2,C#P0+2,0%AC)

B2=-(Bl*A1#A0-2,0%#A1#P0-2,C*A0%PL+A1#A0)/AO=%2

C2=(B2-C1#A1)/A0Q

A2==(B2#A1*AD+BLl#A1 #2242 ,0#A1#P1+42,0#A0#P2+A1%%2)/(2,0#(B1l*AC+PC
+A0))

B3==(4,U#B2%A1#A042,0%B1#A2#A0+BLleAl#22-4,0%A2#P0-4,0%A]1 #P]
~4.0%A0%P2+2,0%A2#AC+AL%22) /(3,0%A0%#2)

C3=(B3-C2#A1-C1%A2) /A0

A3=-(B3#A1#A0+2,0%B2#A2%A0+B2#Al#%2+3,04B1#A2#A1+2,0%(A22P1+A1%P2
+A0*P3+A2%A1))/(3.0%B1*AC+2.04P0+2.0%A0)

B4==(3.0%B3%A1%A0+2.,0#B2%A2#A0+B22A1##2+B1*#A3#A0+B]l #A2#A])
—2.0%(A32P0+A2#P1+AL%P2+A)#P3)+A22AC+A2%AL) /(2. 0%A0%%2)

C4=(B4-C3#A1-C2#A2-C1#A3)/AC

A4==(B4#ALl*AD+B3#AL#22+42,0#B3#A2%A0+3,0%B2#A2%A1+3,.0#B2%A32A0
+2,C*#BL¥A2*#2+4,0#B1l*A3#A1+2,0# (A3%P1+A2%P2+4AL*P3+A0*P4)
+2.0%A35A1+A2%%2)/(2.0%(2.,02#B1#A0+P0+A0))

B5=-(8.,0#B4*A1#A0+6.,0%B3#A2#A0+3,0%B35AL##2+4,0%B2#A3%A0
+4,0%B2%A2#A142,C%B1#A4#A0+2,0%BLl*A3%A1+Bl*A2#%2-4,0%(A4%P0
+A34P1+A2#P2+AL2P3+ACHP4) 42 ,0#A4#A0+2, 0% A3 AL +A2%02)/
(5.C®AN%%2)

C5=(B5-C4*A1-C32A2-C2%A3-C1%A4) /A0

FIND TIME TI AT WHICH PSI CIFFERS FROM PSI AT TYIELD BY AT MOST
THREE PERCENT.

EPSSER=C.03

DELT=0.C1%TMEAN

TI=TYIELC+DELT

PSIT=PSIFUNI(TI)

EPSI=ABSF(PSII/P0-1,0)

IF(EPSILLE.EPSSER) GO TO 38

DELT=DELT#EPSSER/EPSI

GO TO 37

EVALUATE POWER SERIES AT TI

LETA=AO+AL#DELT+A2%DELT*#2+A3%DELT#%3+A4#DEL T w4

VO=BO+B1#DELT+B2#DELT** 2483« DELT##34B4%DEL To#4+B5DELT ##5

VAUX=CO+C1#CELT+C2%DELT##2+C3#DELT##3+C4#DEL T##4+CS#DELT %5

UO=UO+BC*DELT+BL*DELT##2/2,G+B2#DEL T#%3/3, U+B3#DELT*%4/4.0
+B4aCELT*#5/5,0+B5#DELT*%6/6.0

UAUX=UAUX+CO*DELT+C1#DELT*##2/2.0+C2%DELT##3/30+C35DELTe#4/%40
+C4%CELT=%5/5,04C5%DELT#%6/6,0



Ce#sss PRINT RESULTS AT TI
IF(ISCALE) GO TO 39
PRINT 188,TI,PSII,UO,VD,ZETA,C
GO TO 40
39 TIS=TI/PLASIMP
VOS=VO/PLASIMP
UOS=UO/PLASIMP#=2
PRINT 188,TIS,PSII,U0S,V0OS,ZETA,0
40 IF(NZINT)41,59
Ce#wsws CALCULATICN OF UIZ,TI)
41 NZ=NZINT
42 TF(NZ#DZ.LE.ZETA) GO TO 43
NZ=NZ-1
GO TO 42
43 DO 44 1Z=14NZ
44 ULTZ)=UC-1Z+DZ=UAUX
IF(ISCALE) GO TO 45
PRINT 189,(U(IZ),12=1,NZTOT)
GO TO 5C
45 DO 46 1Z=1,4N2Z
46 US(IZ)=U(IZ)/PLASIMP==2
PRINT 189,(US(1Z2),1Z=1,N2T0T)
50 CONTINUE
Cessnwnsnse SCHECULED PRINTOUTS AT TMAXI(K),
Censwwwss MULTIPLES OF DT
D0 51 JMAX=1,NOMAX
IF(TMAX(JMAX)GT.TI) GO TO 52
51 CONTINUE
JMAX=NONAX+]
52 DO 53 JJUMP=1,NOJMP
IF(TIJMP(JJUMP)4GT.TI) GO TO 54
53 CONTINUE
JIMP=NOJMP+1
54 DO 55 IT=1,1000
IF(IT#*DT.GT.TI) GO TO 56
55 CONTINUE
GO TO 1
56 CONTINUE
Cessswses SOLUTION BETWEEN TI ANC TF
Ce#wse USE SUBRCUTINES DIFSUB AND DIFFUN

TIJMP(K)

Cewss F(1)=v0, F(2)=ZETA, F(3)=UOINC, F(4)=UAINC

Cewss INITIALIZATIONS FOR DIFSUB

F(1)=v0
FI2)=2ETA
F(3)=F(4)=FF(3)=FF(4)=0.3
NEQ=4
NOFNS=C
MORD=6
METH=0
KKSTP=+1
KPHASE=0
DTMIN=0,000001#PLASIMP
EPSERR=(.00C01
EPSZ=0.C0001
EPSPR=0.C00001
EPSRV=0.001
EPSV1=0.C1
EPSV2=0.020G01
NZZ=NZ
DO 57 I=1,4

57 FMAX(I)=F(I)
T=TI

TFy, AND INTEGER

39



Cesx® SELECTICN OF NEXT SCHEDULED PRINTOUT TIME TPR

58 CONTINUE
IF{JJMP.GT.NOJMP) 59,60

59 TAUJMP=2.0#PLASIMP
PJMP=0.,0
GO TO 61

60 TAUJMP=TJIMP (JJIMP)

PJMP=PSTJMP (JJIMP)

61 IF(JMAX.GT.NOMAX) 62,63

62 TAUMAX=Z.0#PLASIMP
PMAX=0.0
GO TO 64

63 TAUMAX=TMAX (JMAX)

PMAX=PSIMAX (JMAX)

64 TDT=IT=#CT
TPR=AMIN1(TDT, TAUJMP, TAUMAX)
IF(TPR.GT.TF) TPR=TF

Cesz2x INTEGRATION OF NONLINEAR DIFFERENTIAL EQUATIONS USING DIFSUB

70 H=TPR-T

FLCTT=T
FF(1)=F(1)

FFI2)=F(2)

F(3)=F(4)=0.0

CALL DIFSUBI(NEQsTyFyDFyHyDTMIN,EPSERRyMORD yMETH , FMAX RLTVER yKKSTP)
PSI=PSIFUNIT)

IF(T.EQsTAUJMP) PSI=PSI-PJMP

IF(KKSTP.GEJN) 73,72

72 PRINT 191,T
GO TO 1

73 VO=F(1)

ZETA=F(2)

UOINC=F(2)

UAINC=F(4)

TS=T/PLASIMP

VOS=VO/PLASIMP

IF(NZINT.EQ.C) GO TO 74
IF(ZETALLE.NZ#DZ) GO TO 99
IF(ZETA.GE.(NZ+1)*DZ) GO TO 95

74 IF(PSI*ZETA.GT.1.5) GO TO 122
IFIVO.LT.2.0) GO TO 100

75 UO=UO+UCINC
UOS=UO/PLASIMP =2
IF(NZINT) 76,78

T68DUGTTE 1 7=7 ;N7
UlIZ)=U(1Z)+UOINC-1Z%DZ*UAINC
US(IZ)=U(IZ)/PLASIMP*=%2

77 CONTINUE

78 NZ=N22
IF(ABSF(TPR-T).LE.EPSPR) GO TO 82

C**xx INTERMECIATE PRINTOUT
IF(ISCALE) GO TU 8¢
PRINT 1€8,T,PSI,UO,V0,ZETA,NCENS
PRINT 189,(U(1Z2),12=1,NZTOT)
GO TO 81

80 PRINT 188,TS,PSI,U0S,V0S,ZETA,NOENS
PRINT 18S,(US(IZ),1Z=1,NZTOT)

81 IF(VO/FMAX(1).LE.EPSRV) 100,70

Cx®%s SCHEDULEC PRINTOUT

82 IF(ISCALE) GO To 83
PRINT 187,T,PSI,UD,V0,ZETA,NCFNS
PRINT 19€C,(U(1Z),12=1,NZTOT)

GO TO 85



83 PRINT 187,TS,PSI,U0S,V0S,2ZETA,NOFNS
PRINT 19Q,(US(1Z)y1Z=1,NZTOT)

85 IF(TPR.EC.TF) GO TC 110
IF(VO/FMAX(1)«LEL.EPSRV) GO TO 109
IF(TPR.ECeTAUJMP+AND+(PSI+PJMP)#ZETAL.GT.1.5) GO TO 222
IF(TPReEC.TAUJMP) JJUMP=JJMP+1
IF(TPR,EC.TAUMAX) JMAX=JMAX+1
IF(TPRGECL,TCT) IT=1T+1
GO TO s5¢e

Cewes ZETA HAS CROSSED NZ#DZ FROM RIGHT TO LEFT IN THIS TIME INTERVAL

90 NZZ=NZ~-1

91 UOP=UO+UCINC
UOPS=UOP/PLASIMP =2
IF(ISCALE) GO TC 92
PRINT 1E8,T,PSI,UOP,V0,ZETA,NOFNS
GO TO 93

92 PRINT 188,TS,PSI,UOPS,VOS,ZETA,NOFNS

93 H=(T=TT)*(NZ#DZ=FF(2))/(ZETA=FF(2))
CO 94 I=1,4

94 F(I)=FFI(I)
T=TT
CALL DIFSUB(NEQsTyF4DFyH,DTMIN,EPSERRyMORD ,METH s FMAX ,RLTVER yKKSTP)
PSI=PSIFUNI(T)
IF(T<EQeTAUJMP) PSI=PSI=PJMP
IF(KKSTP.LT.C) GO TO 72
VO=F(1)
ZETA=F(2)
UOINC=F(3)
UAINC=F (4)
TS=T/PLASIMP
VOS=VO/PLASIMP
IF(ABSF(ZETA-NZ#DZ)J.LELEPSZ) 74,91

Ceens 7ETA HAS CROSSED (NZ+1)#DZ FROM LEFT TO RIGHT IN THIS TIME INTERVAL

95 NZZ=NZ+1

96 UOP=UO+UCINC
UOPS=UOP/PLASIMP#=e2
IF(ISCALE) GO TO 97 .
PRINT 188,T,PSI,UOP,VO,ZETA,NOFNS
GO TO 98

97 PRINT 188,TS,PSI,UOPS,VOS,ZETA,NOFNS

98 H=(T=-TT)=((NZ+1)#DZ-FF(2))/(ZETA=FF(2))
DO 99 I=1,4

99 F(I)=FF(I)

T=TT
CALL CIFSUB(NEQyT4F,DFyHy,DTMIN,EPSERR,MORDyMETH, FMAXyRLTVER »KKSTP)
PSI=PSIFUNI(T)
IF(T.EQ.TAUJMP) PSI=PSI=-PJMP
IF(KKSTP.LT.0) GO TO 72
vO=F(1)
ZETA=F(2)
UODINC=F(2)
UAINC=F(4)
TS=T/PLASIMP
vVOS=VO/PLASIMP
IF(ABSF(ZETA-(NZ+1)#DZ).LE.EPSZ) 74,96
Ceswssnws DEFCRMATION STUPS BEFORE TF
100 IF(ABSF(VOS).LE.EPSV1) GO TO 101
Casxs EXTRAPOLATE TO VvO=C, APPROXIMATELY
H=(T=TT)=VO/(FF(1)=Vv0)
GO TO 71
101 IF(ABSF(VOS)«GT.EPSV2) GO TO 102
PRINT 192


http://IFIKKSTP.lt

42

102

Cruns
Cenan

Cannn

110

111
199

GO TO 1
CONTINUE i
USE POWER SERLES TO IMPROVE APPROXIMATION TO v0O=0
COEFFICIENTS
CALL PSICOEF(T,SPSI)

PQ=PSI
p1=SPSI(1)
p2=SPSI(2)
P3=SPSI(3)
P4=SPSI(4)
AQ=ZETA
Bu=VO
C0=8B0/A0
A1=(B.O-Z.OiPGiAO-AOG'ZD/lAD'BO)
Bl=(4.0¢P0'A0—A0'02-3.0)/AO'OZ

=(B1=-CC*A1) /A0
§§=(Hé.n1:;2431-A1¢Au¢2.0-(PC-A1+P1'A0+A1'A0))/(-AO'BO)
BZ:-(aluAlpAO—z,Ql(DOQA1+P1|AO)#Al'AO)/AO"Z
C2=(B2=-C1#A1-CO*A2)/AD
A3=-l3.C!BOGAZ*A1+Z.0'81'AZ*AO*B10A10'2*520A1'A042.0'(P00A2£P1'A1

) | +P28A0+A2RAG) +AL#%2)/(3.C#A0#BO)
D3=-(4.C'BZIA1'AC*2.O'BlﬁAZ'AQ*BIGAl"Z-“-O'(PO'AZ*PIGAIOPZQAO)
L +2,C#A28A0+A1#%2)/(3,0%AC*2)

C3=(B3-C2#A1-C1#A2-CO#A3)/A0
A4=-(4.0080'A30A1#3.OlBIlABOAOOZ.OOBO'A20|2+3.O’BIGAZOA1

i *2.GlBZ!AZ'AO*BZ!AI"Z*BB'ALOAOOZ.O'(P00A3+P1ﬁA2*P2¢A10930A0

2 +A3#AC+A2#AL) )/ (4.0%A0=BC)
R4==(3.C#B3#A1#A0+2.0%B2#A2#A0+B2#ALl#22+B1leA38A0+BLleA2#A]

1 =2,08(POeA3+Pl#A2+P2#AL+P3#A0)+A3#A0+A2#AL)/(2.0%A0=2)
C4=(B4=C3%A1-C2#A2-C1#A3-CO#A4)/AQ
AS5==(5.(0*BO®A4%AL1+4,0%Bl#A4#A0+5.0#B0»A3#A2+4,0#BlaA3eA]

1 +3,0%R2#A38A0+2,0#BLl#A2#%2+3,0#B2#A2»A1+2,04B3#A2#A0+B3#Al#s2

z +B42AL#A0+2,0% (PORAL+PL1#A3+P2#A2+P3#A1+P4=A0+A4#AD+A3#AL)

& +A2%%2)/(5.0*A0#BD)
B5==(8.C#B4*A1#AN+6,0#B3#A2#A0+3,0#B3#Al##2+44,0#B2#A3%A0

1 +4,0%B28A22A1+42,02B1%A4#A0+2,0#BLl#A32AL+Bl*A2#22-4,0%(PO®AL

2 +PL#A3+P22A2+P3#AL+P4#AC)+2,0#A4%A0+2,0#A3 %A1 +A2#02)/

=l (5,0%AD%%2)

C5=(B5=-C4#A1=-C3#A2-C2#A3-C1#A4~-CO0=A5)/A0
EVALUATE POWER SERIES
XDELT==4,"#B2%#BC/Bl#%2
DELT=XDELT#B1/(2.0#B2)/(SQRTF(1,0+XDELT)+1.0)

T=T+DELT
PSI=PSIFUNI(T)
ZETA=AO+A1#DELT+A2#DELT*#2+A3#DELT##3+A4#DELT##4+A5#DELT ##5
VO=BO+Bl#DELT+B2#DELT*##24B3#CELT#*34+B4#DELT#=4+B5#DELT##5
UOINC=BC#DELT+Bl#DELT##2/2,0+4B2#DELT##3/3,0+4B3#DELT##4/4,0

1 +B4#CELT#25/5,0+B5#DELT#%6/6.0
UAINC=CC#DELT+C1*DELT##2/2,0+4C2#DELT##3/3,0+C3#DELT*#4/4.0

1 +C4#CELT##5/5,04C5#DELT#%6/6,0
TS=T/PLASIMP
vOS=vO/PLASIMP
GO TO 75

Cexsxuxws COASTDOWN CALCULATION AFTER PULSE ENDSy T «GTe TF

PRINT 193

ZETAF=ZETA

VOF=VO0

UOF=U0

IF(NZINT.EQ.0) GO TO 109
DO 111 Iz=1,NZTOT
UF(1Z)=U(12)

PSI1=0.0



AF=(3,0-ZETAF=#2)/(VOF*2ETAF)
BF=ZETAF=-AF*TF
TEND=(SQRTF(3.0)=BF)/AF
I1T=0
112 IT=IT+1
T=1T«0T
IFIFLESTF) €GO TO 112
113 ZETA=AF#T+BF
VO=(3.,0-2ZETA#»Z)/(AF#ZETA)
U0=UUF*((ZETAFOOZ-ZETA"Z'/2.0*3.0’LOGF(ZETA/ZEYAF))/AF.OZ
IF(ISCALE) GO TU 114
PRINT 194,T,PSI,U0,V0,ZETA
GO TO 115
114 TS=T/PLASIMP
vVOS=VO/PLASIMP
UOS=UD/PLASIMP=#2
PRINT 194,TS,PSI,U0S,VOS,ZETA
115 IF(NZINT.EQ.0) GO TO 121
Cewsw CALCULATE UI(Z,T)
12=0
116 1Z=12+1
1=12+D2
IF(Z.GT.ZETAF) GO TO 117
Cesse 7 [S BETWEEN ZERO AND ZETAF
UIIZ)=UF(IZ)+((ZETAF-ZETA)®(ZETAF+ZETA=2.0%2)/2.0
1 +3.0%LOGF(ZETA/ZETAF)+3,CuZ#((1.3/2ETA)=(1.0/2ETAF)))/AFes?
GO TO 11¢
Cessue 7 IS BETWEEN ZETAF AND ZETA
117 IF(Z.GT.ZETA) GO TO 118
ULIZ)=UF(IZ)+(~(ZETA-2)%#2/2.0+3,0#LOGF(ZETA/Z)+3,0#(2/2ETA-1.0))
1 /AF®=2
GO TO 11eé
318 IF(ISCALE)Y GO TO 119
PRINT 19C,(UlIZ),1Z=1,N2TOT)
GO TO 121
119 DO 129 IZ=1,NZTOT
120 US(IZ)=UlIZ)/PLASIMP==2 .
PRINT 190,(US{IZ),12=1,N2TOT)
121 IF(TLEQ.TEND) GO TO 1
IT=1T+1
T=1T=0DT
IF(T.LE.TENC) GO TO 113
T=TEND
G0 .TO 113
Cewennnes MCTICN GOES INTO PHASE 2 TYPE DEFORMATION PATTERN
Cense FIND TIME TAUl2 AT WHICH MOTION GOES INTO PHASE 2
122 CONTINUE
EPSPH2=C.C2001
vo2=vOo
ZETA2=ZETA
T2=T
PS12=PSI
VvOl=FF(1)
ZETA1=FF(2)
T1=TT
PSI1=PSIFUN(T])
124 UOP=UO+UCINC
UOPS=UOP/PLASIMP®=«2
IF(ISCALE) GO TO 125
PRINT 18&,T,PSI,UOP,VO,ZETA,NOFNS
GO TO 12¢
125 PRINT 188,TS,PSI,UCPS,VOS,ZETA,NOFNS
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126 H=(T2-T1)#(1,5-PSI1#Z2ETAL)/(PSI2#ZETA2-PSI1#ZETAL)

LO 127 I=1,4
12 7B L) =ERIT)

ZAI& DIFSUB(NEQyTyF4DFyH,DTMIN,EPSERRyMORDyMETHy FMAXyRLTVER , KKSTP)

PSI=PSIFUNI(T)

IF(KKSTP.LT.C) GO TO 72

VO=F(1)

ZETA=F(2)

UOINC=F(3)

UAINC=F(4)

TS=T/PLASIMP

VOS=VO/PLASIMP

IF(ABSF(PSI*ZETA-1.5).LT.EPSPH2) GO TO 130

IF(PSI*#ZETA.GT.1.5) GO TO 126

T1=T
ZETA1=ZETA
PSI1=PSI

DO 128 I=1,4
128 FF(I)=F(I)
GO TO 124
129 T2=T
ZETA2=ZETA
PSI2=PSI
GO TO 124
130 CONTINUE
UO=U0+UCINC
UOS=UQ/PLASIMP#%2
D0 131 I1Z=1,NZ
U(IZ)=U(1Z)+UOINC-1Z*DZ#UAINC
US(IZ)=U(IZ)/PLASIMP#=2
131 CONTINUE
TAU12=T
PRINT 195,T,TS
ETA=ZETA
IF(ISCALE) GO TO 132
PRINT 1964T,PSI,UO0,VO,ZETA,ETA,NOENS
PRINT 19€,(U(1Z),1Z=1,NZTOT)
GO TO 132
132 PRINT 196,TSqPSI.UOS,VOS;ZETA,ETA.NOFNS
PRINT 19C,(US(IZ),1Z=1,N2TOT)
133 CONTINUE
KPHASE=1
K21=0
K22=0
F(l)=vo
F(2)=VAUX=V0/ZETA
JOM=1001
OMEGAL(JCM)=TAU12
ZL(JOM)=ZETA
GO TO 225
Cauxs AN INSTANTANEOUS JUMP INTOQ PHASE 2 OCCURS AT T
222 TAUl2=T
PRINT 16¢,71,TS
ZETA1=ZETA2=ETA2=ETA=ZETA
PSI12=1.5/7ZETA2
K21=K22=9
PSI=PSI+pPyMP
ZETA=1.5/PS1
IF(ISCALE) Go To 223
PRINT 1961TpPSIZ'UGvVUylETA2 TA
PRINT 19Cy(U(IZ)'IZ=17NZTDT)'E B -



PRINT 196,T,PSI,UC,VO,ZETA,ETA,NOFNS
PRINT 1994(U(IZ)y1Z=1,NZTOT)
GO TO 224
223 PRINT 196,TSyPSI2,U0Ss+VOS,ZETA2,ETA2,NOFNS
PRINT 16C,(US(IZ),1Z=1,NZTOT)
PRINT 196,TS,PSI,U0S,VOS,ZETALETA,NOFNS
PRINT 19C,(US(IZ),1Z=1,N2ZTOT)
224 VAUX2=VAUX=V0O/ZETAZ
VZETA2=0C
VZETA=VC=VAUX®ZETA
OMEGAL(1C01)=TAUl12
ZL(1001)=2ETA2
OMEGAL(10C0O)=VZETA+TAU12
ZL(100N)=Z2ETA
JOM=100C
Fl1)=v0
Fl2)=VAUX
JIMP=JJMP+1
IF{TAUL2.EQ.TDT) IT=1T+1
IF(TAU12.EQ.TAUMAX) GO TO 226
KPHASE=1
GO TO 22S
226 JMAX=JMAX+1
KPHASE=2
229 CONTINUE
Cesnnenes PHASE 2 DEFORMATION
Ceses INTEGRATION TIME STEPS AND PRINTOUT TIMES
NT2=10
NT3=2
DT2=DT/NT2
DT3= DT2/NT3
TOT=1T#CT
DO 231 1T2=1,NT2
TOT2=TDT=(NT2-1T2)«DT2
IF(TDT2.GT«TAUL2) GO TO 232
231 CONTINUE
GO TO 1 .
232 DO 233 IT3=1,NT3
TDT3=TDT2=-(NT3-1T3)«DT3
IF(TDT3.,GT.TAUL12) GO TO 235
233 CONTINUE
GO TO 1
235 IF(JJMPGT.NOJMP) 236,237
236 TAUJMP=2,0#PLASIMP
PJMP=0.0
GO TO 23&
237 TAUJMP=TJUMP(JJIMP)
PJMP=PSTJMP(JJIMP)
238 IF(JMAX.GT.NOMAX) 239,240
239 TAUMAX=2,2#PLASIMP
PMAX=0.0
GO TO 241
240 TAUMAX=TMAX (JMAX)
PMAX=PSIMAX (JMAX)
241 TDT=1T#0T
242 TDT2=TOT=(NT2=-1T2)=DT2
243 TDT3=TDT2=(NT3=1T3)«DT3
TPR=AMINL(TOT2, TAUJMP, TAUMAX)
244 TCAL=AMINLITDT3,TAUJMP,TAUMAX)
Cewss USE SUBRCUTINES DIFSUB AND DIFFUN
246 T1=T
PSI1=PSI
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249
250

Cruns

252

Cunun

253

Cosnn
254
255

Cozns
257
258

259

Cunxsn

265

ZETAL=ZETA
ETAL=ETA

vO1=V0

VAUX1=VAUX

FI3)=F(4)=2.2

H=TCAL-T

CALL DIFSUB(NEQsTsFDFyH,DTMIN,EPSERR,MORD,METH,FMAX,RLTVER»KKSTP)
PSI=PSIFUNI(T)

IF(T.EQ.TAUJMP) PSI=PSI-PJMP
IF(KKSTP.LT.0) GO TO 72

IF (ABSF({TCAL-T).GT.EPSPR) GO TO 250
VO=F(1)

VAUX=F(2Z)

UOINC=F(3)

UAINC=F (4)

TS=T/PLASIMP

VOS=VO/PLASTHP

IF(KPHASE.EC.2) GO TO 253

T'IS BETWEEN TAU12 AND TAUMAX (KPHASE=1)
ZETA=1.5/PSI

VZETA=VC=VAUX=ZETA

JOM=J0OM=-1

CMEGAL(JCM)=VZETA+T

ZL(JOM) =ZETA

ETA=OMEGINV(T)

GO TO 265

T IS BETWEEN TAUMAX AND TAU21 (KPHASE=2)
LETA=ZETAEQ(VAUX,VO+T)

ETA=OMEGINV(T)

VZETA=VC=VAUX=ZETA

IF(K21) GO TO 255

IF(K22) GO TO 258

IFIETA.LE.ZETA) GO TO 254
IF(PSI#ZETA.GT.1.50001) GO TC 257

GO TO 265

T IS INSTHE VICINITY OF TAU21

K21=1

IF(ABSF(ETA-ZETA).LE.EPSZ) GC TO 259
TCAL=(T#(ETAL-ZETAL)+T1#*(ZETA-ETA) ) /(ETA1-ZETA1+ZETA-ETA)
T=T1

F(1)=vO1

F(2)=VAUX1

GO TO 249

INTERPOLATE TO PSI*ZETA=1.5

K22=1

IF(ABSF(PSI*ZETA-1.5).LE.EPSZ) GO TO 259
TCAL=((PSI*ZETA-1.5)#ZETAL*T1+(1.5-PSI1+ZETAL) #ZETA=T)/
y Tl((PSI'ZETA—I.S)GZETAX*(1.5-PSII-ZETA1)~ZETA)
F(1)=v01

F(2)=VAUX1

GO TO 249

TPR=T

GO TO 265

DEFORMATION CALCULATIONS

UD=UO+UCINC

UOS=UO/PLAS IMP##2

00 268 1Z=1,NZTOT

7=12%02

IF(Z.GT.ZETA) GO TO 266
UL1Z)=U(1Z)+UBINC=-Z*UAINC

GO TO 267



266

267
268

Cuunsn

269

270
Cunnn
272
275

Conns

a7

278

279

Conan

280

281

282

Cuannse

285

IF(Z.GT.ETA) GO TO 268
ULIZ)=U(IZ)+(=0.5#(T+T1)+0MEGA(Z))=*(T-T1)
US(IZ)=U(IZ)/PLASIMP==2

CONTINUE

PRINTOUTS

IF(ABSF(T=TPR)LE.EPSPR) T=TPR
IF(T.EQ.TPR) 269,272

IF(ISCALE) GO TO 270

PRINT 1964+T,PSI,UQ,VOsZETA,ETA,NOFNS
PRINT 19C(U(IZ),1Z=1,NZTOT)

GO TO 275

PRINT 19€4.TS,PSI,UOS,VOS+ZETA,ETA,NOFNS
PRINT 19C,(US(1Z),1Z=1,NZTOT)

GO TO 275

BRANCHING

IT3=1T7T3+1

GO TO 242

IF(K21) GO TO 277

IF(K22) GO TO 280

IF(T.EQ.TAUJMP) GO TO 285
IF(T.EQ.TAUMAX) GO TO 295
IF(T.EQ.TDT2) GO TO 297

GO TO 1

T EQUALS TAU21 (RETURN TO PHASE 1 CALCULATION)
KPHASE=0

PRINT 1G7,T7,TS

IF(T.GE.TF) GO TO 279

F(1)=vO

F(2)=ZETA

NZ=NZZ=NZTOT

IF(NZ#DZ.LE.ZETA) GO TO 70
NZ=NZZ=NZ-1

GO TO 278

TFaT

GO TO 11C

T EQUALS A NEW TAUl12 (HINGE BAND BEGINS TO EXPAND AGAIN)
TAU12=T b
KPHASE=1

K22=0

PRINT 198,T,TS

D0 281 JZ=J0OM,1070
IF(ZETAWGEZZL(JZ)sANDeZETALLEL.ZL(JZ+1))GO TO 282
CONTINUE

JOM=J0M=-1

CMEGAL(JCM)=VZETA+T

ZL(JOM)=ZETA

GO TO 242

OM=0MEGA(ZETA)

JOM=J2Z-1

CMEGAL(JZ)=CM

CMEGAL(JCM)=VZETA+T
ZL(JZ)=ZL(JOM)=ZETA

GO TO 242

T EQUALS TAUJMP

JIMP=JJMP+1

PSI1=PSI

PSI=PSI+PJMP

IF(PJMP.LE.C.C) GO TO 292
IF(KPHASE.EC.2) GO TO 286

JOM=JCM=-1

ZETA=1.5/PSI

VZETA=VO-VAUX®ZETA

47
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290

291

292

293

294
295

296
297

298

CMEGAL(JCM)=VZETA+T
ZL(JOM)=ZETA

GO TO 292

IF(PSI#ZETA.LT.1.5) GO TO 292
PSI2=1.5/ZETA

ZETA2=ZETA

VZETA2=VZETA=VO-VAUX*ZETA

PRINT 198,T,TS

IF(ISCALE) GO TU 287

PRINT 196,T,PS12,U0,V0+ZETA2,ETA,NOFNS
PRINT 19C»(U(IZ),12=1,NZT0OT)

GO TO 288

PRINT 156,TS,PSI2,U0S,VOS,ZETA2,ETA,NOFNS
PRINT 19C,(US(1Z),12=1,NZT0OT)

TAU12=T

CO 289 JZ=JCM,1000
IF(ZETA24GEZZL(JZ)+ANDLZETA2.LE.ZL(JZ+1)) GO TO 299
CONTINUE

JOM=JCM-1

OMEGAL(JCM)=VZETA2+T

ZL(JOM)=ZETA2

GO TO 251

CM=0OMEGA(ZETA2)

JOM=Jz-1

CMEGAL(JZ)=CM

CMEGAL(JCM)=VZETA2+4T
ZL(JZ)=ZL(JCM)=ZETA2

ZETA=1.5/PSI

VZETA=VC-VAUX®ZETA

KPHASE=1

JOM=JOM-1

CMEGAL(JCM) =VZETA+T

ZL(JOM) =ZETA :

IF(ISCALE) GO TO 293

PRINT 196,T,PSI,U0,V0,ZETA,ETA,NOFNS
PRINT 160,(U(I1Z),1Z=1,N2TOT)

GO TO 294

PRINT 166,TS,PSI,U0S,VOS,ZETA,ETA,NOFNS
PRINT 190,(US(1Z),12=1,NZTQT)
IFIT<NE.TAUMAX) GO TO 296

JMAX=JMAX+1

KPHASE=2

IF(T.EQ.TDT2) 297,235

A=

IECIT2., EQ.NT2) GO TQ 298

IT2=1T2+1

GO To 235

1T2=1

IT=1T+1

GO TO 235

Cxxxsxxxx FORMATS

170
1l
172
173
174

1

FORMAT(1CA8)
FORMAT(1H1, 7X#PROGRAM RINGLOAD#*//8X,10A8)
FORMAT(12+2X,12,2X,12)
FORMAT (1HQ, 7X=#INPUT ERROR*#/8X#KSTOP =#]2)
FORMAT(1HS, 7X* INSTJMP =#=]2

*y INDICATING AN INSTANTANEOUS JUMP AT TYIELD#)

175 FORMAT(1HO,7X#PULSE PARAMETERS#/12X

Bw N e

*PULSE BEGINS AT TAUQ =sE1l2.5/12X
*PULSE ENDS AT TAUF =XE1Z2.5/10X
*PLASTIC FLOW STARTS AT Ty =#E12.5/12X
=#TOTAL IMPULSE TOTIMP =#E12.5/12X
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5 #PLASTIC IMPULSE (IMPULSE AFTER TY) PLASIMP = [ =#E12.5/12X
6 #MEAN TIME OF PULSE TM =#El12.5/12X
i #EFFECTIVE LOAC PSIE =#E12,.5)
176 FORMAT(1HO,7X#SCALED PULSE PARAMETERS#/12X
1 #TAUC/1 =#EL12.5/12X#TAUF/1 =#El2.5/12X
2 #TY/1 =%E12.5/12X#TM/]1 =#E12.5)
177 FORMAT(1HO,7X#LOCATICNS OF RELATIVE MAXIMA OF PULSE®*/3XaK#T7X
1 #TMAX#12X#PSIMAX#11X#TMAX/I#/(14,3E17.7))
178 FORMAT(1HO,7X#THE SELECTED OUTPUT INTERVALS ARE#*/12X
1 *TIME INTERVAL DT =#El2.5/12X
2 #SCALED TIME INTERVAL DTS = DT/I =#El12.5/12X
2 #AXIAL INTERVAL DZ =#El12.5)
179 FORMAT(1HQ,7X#SELECTED SCALEC TIME INTERVAL IS TOO LARGE,*

1 /B8X#14Eey NTSINT IS SMALLER THAN TEN.#)
180 FORMAT(1HO,7X#INSTANTANEOUS JUMPS IN PULSE SHAPE®/3X#KeTX
1 #TJVP#12X#PSIJMP#11X#TUMP/1#/(14,3E17.7))
181 FORMAT(1HO,7X#SELECTED AXIAL INTERVAL FOR DISPLACEBMENT PRINTOUT =
1 #1S TOO SMALL,#/8X#I.Esey NZINT IS LARGER THAN 25#)
182 FORMAT(1H1,8X*T/1#12X#PSI(T)#9X#U(0,T)/1/1#8XeV(0,T)/I=10X
1 #ZETA(T)#10X*ETA(T)#11X*NOFNS*)

183 FORMAT(1HO,37X#U(L1CZ,T)/1/1#5X#U(2DZ,T)/1/1#5X*U(3DZ,T)/1/1=5X
#U(4CZ,T)/1/1#5X#U(502Z,T)/1/1#/38X*UL6DZ,T)/1/185X
#ULTCZyT)/1/1#5X2U1BDZ,T)/1/1#5X%U(9DZ,T)/1/1#5X
*U(1CCZ,T)/1/1=)
184 FORMAT(1Hl,9X#T#13X#PSI(T)#11X#U(0,T)*#11X*V(0,T)#11X®ZETA(T)#*10X
1 #ETA(T)#11X&NOFNS#*)
185 FORMAT(1HD,39X*U(1CZ,T)#9X*U(2DZ,T)*#9X*U(3DZ,T)*9XeU(4DZ,T)=9X
1 #U(SCZyT)#/40X*U(6DZ,T)#SX*U(TDZ,T)#9XeU(BDZ,T)#9XeU(IDZ,T) =
2 9X#U(LOCZ,T)*)
187 FORMAT(1HO,/5E1747417X,110)
188 FORMAT(1HO,/2Xy5E17.7+17X,11C)
189 FORMAT(1KO0,35X,5E17.7/(36X,5E17.7))
190 FORMAT(1HO,33X,5E17.7/(34X,5E17.7))
191 FORMAT(1HO,7X#NO CONVERGENCE IN STEP TO T =#El12.5)
192 FORMAT(1HO,7X*DEFORMATION STCPS BEFORE END OF PULSE®)
193 FORMAT(1HO, 7X*DEFORMATION CONTINUES AFTER END OF PULSE®)
194 FORMAT(1KOQ,/S5ELl7.7) .
195 FORMAT(1HO,//8X#A HINGE BAND FORMS AT T =#El12.5#, T/I =#El12.5)
196 FORMAT(1HI,/6E17.7,110)
197 FORMAT(1K0,//8X*#THE HINGE BAND REDUCES TO A HINGE CIRCLE AT T =e
| E12.5%, T/1 =#E12.5)
198 FORMAT(1HO,//8X#THE HINGE BAND BEGINS TO EXPAND AGAIN AT T =e
1 El2.5#, T/1 =#E12.5)
199 FORMAT(1HO,//8X#A HINGE BAND FORMS INSTANTANEOUSLY AT T =«
1 E12.5%, T/1 =#El12.5)
END

W N -
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SUBROUTINE CIFFUN(T,F,DF)

SUBROUTINE WHICH PROVIDES RINGLOAD PROGRAM WITH RIGHTHAND SIDES OF

DIFFERENTIAL EGQUATIONS

o000

MENSICN F(4),DF(4),SPSI(4)
géMMDN/CCMDIF/NOFNS.KPHASEvTAUJMpvaMP
PSI=PSIFUNI(T)

IF(T.EQ.TAUJMP) PSI=PSI-PJMP
Cass® F(1)=VO, F(3)=UOINC, F(4)=UAINC
IF(KPHASE=-1)470,4M1,472
Cesxes MOTION IS IN PHASE 1 (KPHASE=C)
400 VO=F(1)
ZETA=F(2)
DF(1)=(4.,2%PSI=3.,Nn/ZETA-ZETA)/ZETA
DF(2)=(-2.)#PSI+3,0/ZETA-ZETA)/VO
CF(3)=vC
CF(4)=VC/ZETA
GO TO 404
Ceses MOTICN IS IN PHASE 2 (KPHASE=1)
4971 VO=F(1)
VAUX=F(2)
ZETA=1.5/PSI
GO TO 4¢3
Cx#x® MOTION IS IN PHASE 2 (KPHASE=2)
402 VO=F(1)
VAUX=F(2)
ZETA=ZETAEQ(VAUX,VC+T)

403 DF(1)=(4.0#PSI=-3,0/ZETA-ZETA)/ZETA
CF(2)=6.G#(PSI*#ZETA=1.0)/ZETA%#3
DF(3)=VC
DF (4)=VAUX

404 NOFNS=NCFNS+1
ENC

FUNCTION CMEGA(Z)

FINDS OMEGA(Z) BY LINEAR INTERPOLATION IN THE TABLE OMEGAL

(2i(2ie)

COMMON/CCMOMEG/JOM, OMEGAL(1CTL) 9ZL(1201)
CO 530 JZ=JCM,10C02
IF(ZL(JZ).EQ.ZL(JZ+1)) GO TO 500
IF(Z.GEWaZL(JZ)WoANDoZoLELZLIJZ#+1)) GO TO 501
50C CONTINUE
IF(Z.GT.ZL(1001)) 506,507
506 PRINT 51C»Zy(JZ,ZL(J7),0MEGAL(JZ)JZ=J0M,1091)
STOP
507 CONTINUE
IF(ZaLToZLIJOM)) JZ=J0M
501 OMEGA=(CMEGAL(JZ+1)#(Z=ZL(JZ))+0OMEGALIJZ)*(ZL(JZ+1)=2))
i ZVZEIN 7% L) =2 1500 Z))

51C FORMAT(1K0,7X#0OMEGA STOP, Z =#E12.5/(8X,16,2E17.7))
ENC :
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FUNCTION OMEGINV(X)
SOLVES X = CMEGA(Z) FOR Z

COMMON/CCMOMEG/JOM, OMEGAL(10C1),ZL(1001)
DO 55C JZ=JCM,1C0C
IF(OMEGAL(JZ).EQ.OMEGAL(JZ+1)) GO TO 550
IF(XeLE«CMEGAL(JZ).AND.X.GE.CMEGAL(JZ+1)) GO TO 551
550 CONTINUE
IF(X.LT.CMEGAL(1001)) 556,557
556 PRINT 56CaX,(JZ4ZL(JZ),0MEGAL(JZ),JZ=J0M,1001)
sTCP
557 CONTINUE
IF(XeGT4CMEGAL(JOM)) JZ=J0OM
551 OMEGINV=(ZL(JZ+1)*(X=OMEGAL(JZ))+ZL(JZ)*(OMEGAL(JZ+1)=X))
1 /(OMEGAL(JZ+1)-0MEGALI(JZ))
560 FORMAT(1HOQ,7X#0OMEGINV STOP, T =#E12.5/(8X,16,2E17.7))
END

FUNCTION ZETAEQ(A,R)

SOLVES THE EQUATICON OMEGA(Z) = B - A#Z FOR Z, wWHERE
CMEGA(Z) = AOM(J)=7Z + BOM(J)

COMMON/CCMOMEG/JOM,OMEGAL(16GCL),ZL(1C01)
DO 600 JZ=J0OM,1020
IF(ZL(JZ).EQeZL(JZ+1)) GO TO 600
AQM=(0OMEGAL(JZ+1)=CMEGALI(JZ))/(ZLIJZ+1)=-ZL(JZ))
BOM=(OMEGAL(JZ)#ZL(JZ+1)=0OMEGAL(JZ+1)*ZL(JZ))/(ZL(JZ#1)=2L1J2))
IF(ABSF(A4AOM).GT.C.C0N0C1) GO TO 633
ZETAEQ=ZL(JOM)
RETURN »
603 CONTINUE
2=(B=-BOM)/ (A+ADM)
IF(Z.GE4ZL(JZ)+ANDeZ.LE.ZLIJZ*1)) GO TO 601
600 CONTINUE
AOM=(OMEGAL (JCM+1)=0MEGAL(JOM))/(ZL(JOM+1)=ZL(JOM))
BOM=(OMEGAL (JOM) #ZL (JOM+1)=OMEGAL(JOM+1)«ZL(JOM))
1 /(ZL(JOM+1)=ZL(JOM))
Z=(B=-BOM)/(A+AOM)
[F(ZeGToZL(JOM)) 606,601
606 PRINT 61042,(JZ,ZL(JZ),0OMEGAL(JZ),JZ=J0M,1001)
sTCP
601 ZETAEQ=Z
610 FORMAT(1HO,7X#ZETAEQ STOP, Z =#E12.5/(8X,16,2E17.7))
ENC
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SUBROUT INE PULSEINF(TO,TFyTYIELD'TOTlMP.PLASIMP,TMEAN,NOMAX,
1 TMAX,PSIMAX,INSTJMP,NDJMP'TJMP.PS[JMP'KSTOP)

SUBROUTINE WHICH PROVIDES RINGLOAD PROGRAM WITH BASIC INFORMATION
ON PULSE SHAPE.

PIECEWISE LINEAR VERSION.
THE PULSE SHAPE IS DESCRIBED BY GIVING PSI VALUES AT A NUMBER OF

TIME POINTS AND USING LINEAR INTERPOLATION.

REQUIREC INPUT FROM DATA CARCS
CARD 3. FORMAT(I2)

NJ (NUMBER OF INPUT DATA POINTS)
CARDS 43546000 FORMAT(2E15.7)

TJ(J) AND PSIJ(J) (DATA POINT PAIRS)

OUTPUT TC RINGLOAD
TQ (TIME AT WHICH PULSE BEGINS)
TF (TIME AT WHICH PULSE ENDS)
TYIELD (TIME AT WHICH PLASTIC FLOW FIRST OCCURS, PSI=1.0)
TOTIMP (TOTAL IMPULSE)
PLASIMP (IMPULSE AFTER TYIELD)
TMEAN (TIME MEAN OF PLASTIC IMPULSE MEASURED FROM TYIELD)
NOMAX (NUMBER OF RELATIVE MAXIMA)
TMAX(K) AND PSIMAX(K) (LCCATIONS AND VALUES OF RELATIVE MAXIMA)
INSTJMP (IF POSITIVE,PULSE HAS INSTANTANEOUS JUMP AT TYIELD)
NOJMP (NUMBER OF TIMES AT WHICH PSI HAS AN INSTANTANEOUS JUMP)
TJMP(K) AND PSIJMP(K) (LOCATIONS AND VALUES OF JUMPS)
KSTCP (IF POSITIVE, THERE IS AN INPUT ERROR)

COMMON WITH FUNCTICN PSIFUN AND SUBROUTINE PSICOEF
NJy TJ(J) s PSIJ(J)

IF AN INSTANTANEOUS JUMP DOCCURS AT TJ, THE VALUE OF PSI TO
THE LEFT OF THE JUMP IS RETURNED.

(e eisiel e lgislalal sl elia iz ialaie el s alal e e)alile vile sl 2ia i a ol el af =)

DIMENSICN TJS(99),TJMP(50),PSIJMP{50),TMAX(50),PSIMAX{50)
COVMMON/ PULSE/NJ»TJI(99),PSIJ(S9)
Cexsuxuxx TITLE, DATA INPUT, AND INITIALIZATIONS
READ 286,4NJ
READ 2854 (TJ(J)4PSIJ(J)yJ=1,NJ)
PRINT 26C
KSTOP=0
INSTUMP=C
Cexswuzss CHECK ORDERING OF INPUT CARDS
DO 201 J=2,NJ
IF(TJ(J)«LT.TJ(J=1)) GO TO 280
201 CONTINUE
Ceexnuxss TO AND TF
TO=TJ(1)
TF=TJ(NJ)
Cesswanss TYIELD AND INSTJMP
IF(PSIJ(1)eGTele0) GO TO 2C4
DO 203 J=2,NJ
IF(PSIJ(J)eGTola0sANDLPSI =1 eLExls
T J(J-1)eLEs1.0) GO TO 205
GO TO 281
204 INSTJMP=1
JYIELD=1
TYIELD=TC
GO TOo 2GS
205 JYIELD=J



1

IFITJ(J)EQ.TI(J=1)) GO TO 206

TYIELD=(TJ(J=1)#(PSTIJ(J)=1.0)4TJ(J)#(1.0=-PSIJ(JI=1)))/UPSII(J)=
PSIJIJI=1))

GO TO 209

206 INSTJMP=1

TYIELD=TJ(J)

209 CONTINUE
Cesnsssss TOTIMP,PLASIMP, TMEAN

210

212
213

1

TOTIMP=0.C

DO 210 J=2,NJ

TOTIMP=TCTIMP#(PSIJ(J)+PSIJ(J=1))e(TI(J)=TI(JI=1))/2.0

IF(INSTJUMP) GO TO 212

PLASIMP=(PSIJ(JYIELD)+1.0)#(TJ(JYIELD)=-TYIELD)/2.0

AUXTM=(2,0#PSTJ(JYIELD)+1.0)*(TJ(JYIELD)=TYIELD)»=2/6.0

GO TO 213

PLASIMP=0.0

AUXTM=0.0

JJ=JYIELD+1

D0 214 J=JJ,NJ

PLASIMP=PLASIMP+(PSIJ(J)+PSIJ(JI=1))=(TI(J)=TI(J=1))/2.0

AUXTM=AUXTM+(PSIJ(J)#(2,0#TJ(J)+TI(J=1)=3.0#TYIELD)+PSIJ(J=1)*
(TJ(J)I+42,08TJ(J=1)=3,0#TYIELD) ) ®#(TI(J)=TI(J=1))/6.0

214 CONTINUE

TMEAN=AUXTM/PLASIMP
EFFWIDTH=2,0#TMEAN

Cownsnens NOMAX, TMAX(K), AND PSIMAX(K)

221
222

223
224

NOMAX=0

IF(PSIJ(2).GT.PSIJ(1)) GO TO 221
NOMAX=1

PSIMAX(1)=PSIJ(1)

TMAX(1)=TJ(1)

D0 223 J=3,NJ
lF(PSlJ(J'l).GT.PSIJ(J-Z)-ANC.PS[J(J)oLE.PSlJ(J-l))222;223
NOMAX=NCMAX+1

PSIMAX(NCMAX)=PSIJ(J=1)
TMAX(NOMAX)=TJ(J=1)

CONTINUE .
IF(PSIJINJ) «GT4PSIJI(NJI=1))224,225
NOMAX=NCMAX+1

PSIMAXINCMAX)SPSIJINJ)

TMAX(NOMAX) =TJ(NJ)

225 CONTINUE
Cesssawes SCALING OF TIMES BY PLASTIC IMPULSE

DO 230 J=1,4NJ

230 TJS(J)=TJI(J)/PLASIMP
Cenvannan NOJMP, TJIMP(K), AND PSIJMP(K)

240

NOJMP=C

DO 241 J=24NJ
IF(TJ(J)EQeTI(I=1)) 240,241
NOJMP=NCJMP+1

TJMPINOJNMP)=TJ(J)
PSIJMP(NCJIMP)SPSIJLJ)=PSIJ(J-1)

241 CONTINUE
Ceswsanes PRINTOUTS OF PULSE DATA AND ERROR MESSAGES

280

281

PRINT 2945(JsTJL) 4PSTILI) 4 TIS(I)4d=1sNJ)
RETURN

KSTOP=1

PRINT 251

PRINT 252s(JaTJ(J)4PSII(I)4d=1,NJ)

RETURN

KSTOP=1

PRINT 2923

53
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PRINT 2925(JyTJ(J)4PSIJ(J)yJ=1,NJ)
RETURN

Cessnanssx FORMATS

o000

285 FORMATI(ZE15.7)

286 FORMAT(12)
290 FORMAT(1HO,7X*SUBROUTINE PULSEINF IS PIECEWISE LINEAR VERSION#/8X

1 #THE PULSE SHAPE IS DESCRIBED BY GIVING VALUES OF PSI(J)#/8X

2 #AT NJ POINTS OF TIME T(J) AND USING LINEAR INTERPOLATION#)
291 FORMAT(1HO,7X*INPUT CARDS ARE OUT OF ORDER#)
292 FORMAT(1HO,7X#PULSE INPUT DATA#/3X#J#B8X#T#15X#PSI#/(14,2E17.7))
293 FORMAT(1KZ,7X#NO PLASTIC FLOW OCCURS (PSI NEVER EXCEEDS 1.0)#)
294 FORMATI(1HO,7X#PULSE INPUT DATA#/3X#J#B8X#T#15X#PSI*14X#T/ I/

1 (I14,3E17.7))

ENC

FUNCTION PSIFUN(T)
SUBROUTINE WHICH PROVIDES RINGLOAD PROGRAM WITH VALUES OF PSI.

PIECEWISE LINEAR VERSION,.
THE PULSE SHAPE IS DESCRIBED BY GIVING PSI VALUES AT A NUMBER OF
TIME POINTS ANC USING LINEAR INTERPOLATION,

INPUT
T (TIME AT WHICH PSI IS WANTED)

QuUTPUT
PSI (PULSE MAGNITUDE AT T)

COMMON WITH SUBROUTINE PULSEINF
NJy TJ(J)y PSIJLY)

COMMON/PULSE/NJ,TJ(99),PSIJ(99)
PSIFUN=C,?
IF(TeLToTJ(1)eORToGELTJI(NJ)) RETURN
DO 3C4 J=2,NJ
IF(ToGE«TJ(J=1)eANCoToLToTJI(J)) GO TO 305
304 CONTINUE
205 EZéFUN=(PSIJ(J-l)'(TJ(J)-T)*PSIJ(J)'(T—TJ(J—I)))/(TJ(J)-TJ(J-I))
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SUBROUTINE PSICOEF(T,SPSI)

SUBROUTINE WHICH PROVIDES RINGLOAD PROGRAM WITH THE COEFFICIENTS
OF THE POWER SERIES EXPANSION OF PULSE SHAPE PSl.

PIECEWISE LINEAR VERSION.

THE PULSE SHAPE IS DESCRIBED BY GIVING PSI VALUES AT A NUMBER OF
TIME POINTS AND USING LINEAR INTERPOLATION.

INPUT
T $TIME)

QuTPUT

SPSI{N) (NTH DERIVATIVE CF PSI DIVIDED BY N FACTORIAL AND
EVALUATED AT T FOR N = 1,2,3,4)

COMMON WITH SUBROUTINE PULSEINF
NJy TJCJ)» PSIJ(Y)

[3Xs¥sisisNslaNsNeNeNaNa ol Ne e Na el

DIMENSICN SPSI(4)
COMMON/PULSE/NJ,TJ(99),PSIJ(S9)
SPSI(1)=SPSI(2)=SPSI(3)=SPSI(4)=0.0
IF{TeLToTJI1)eOReToGELTJIINJ)) RETURN
DO 354 J=2,NJ
IF{TeGE«TJ(J=1)ANDT.LTLTJ(J)) GO TO 355
354 CONTINUE
355 SPSI(L)=(PSIJ(J)=PSIJ(JI=1))/(TI(J)=TI(I=1))
END

SUBROUTINE PULSEINF(TAUO,TAUF,TYIELD,TOTIMP,PLASIMP, TMEANNOMAX,
1 TMAX 3 PSIMAX s INSTJUMP s NOJMP , TUMP, PSTJMP,KSTOP)

SUBROUTINE WHICH PROVIDES RINGLOAD PROGRAM WITH BASIC INFORMATION
ON PULSE SHAPE.

EXPONENTIAL DECAY VERSION.

THE PULSE IS A LINEAR RISE FCLLOWED BY AN EXPONENTIAL DECAY
PSI=PSIM*(T-TAUO)/(TAUM=TAUO)s TAUOLLE«T.LE.TAUM
PSI=PSIM#EXPF(=(T=TAUM)/TAU), TAUM.LT.T.LE.TAUF

REQUIRED INPUT FROM DATA CARC AND COMMON WITH PSIFUN AND PSICOEF
TAUC,TAUM, TAUF,TAU,PSIM

aNsNsalaNaNalaNaNeNalel

DIMENSION TMAX(1),PSIMAX(1),TJMP(1),PSIJMPI(]1)
COMMON/PULSE/TO,TM,TF,TAU,PSIM
Cessnnsss DATA INPUT AND TITLE
READ 290,TO+TM,TF4TAU,PSIM
PRINT 291 +T0O,TM,TF,TAU,PSIM
TAUO=TO
TAUF=TF
KSTOPSQ
IF(PSIM.GT.1.C) GO TO 203
KSTOP=1
PRINT 292
RETURN
Cesssnnas TYIELDy INSTJIMP,NOMAX,TMAX,PSIMAX,NOJMP,TJMP,PSIJMP
203 IF(TM.GE«TO.AND.TF.GE.TM) GO TO 205
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KSTOP=1
PRINT 2932
RETURN

205 NOMAX=1
PSIMAX(1)=PSIM
TMAX(1)=TWM
IF(TM.GT.TO) GO TO 208
INSTJMP=NOJMP=1
TJMP(1)=TYIELD=TO
PSIJMP(1)=PSIM
GO TO 21¢C

208 INSTJUMP=NCJMP=0
TYIELD=TC+(TM=TO)/PSIM

Cusxssunxax TCTIVNP AND PLASIMP

210 EXPINTSPSIM#TAU#(1.0-EXPF((TM=TF)/TAU))
IF(TM.GT.TO) GO TO 212
TOTIMP=PLASIMP=EXPINT
GO TO 215

212 TOTIMP=PSIM#(TM=TO)/2.0+EXPINT
PLASIMP=PSIM#{TM=TYIELD)*(TM4TYIELD=2.0%T0)/(2.0%(TM=TO) ) *EXPINT

Coumnxxsx TMEAN

215 TEXPINT=PSIM*#TAU#*(TM+TAU=-TYIELD=(TF+TAU-TYIELD)#EXPF{(TM=TF)/TAU))
IF(TM.GT.TO) GO TO 217
TMEAN=TEXPINT/PLASIMP

GO TO 219
217 TTINT=PSIM#(2,0#TM*#3=3,C#(TYIELD+TO)#TM*#2+46,0#TYIELD#TO=*TM
1 +(TYIELC=3.0*TO)*TYIELD=#%2)/(6.0%#(TM=-TO))

TMEAN=(TTINT+TEXPINT)/PLASIMP

219 CONTINUE

RETURN
Crenxunxxs FORMATS

290 FORMAT(5E15.7)

291 FORMAT({1HQ, 7X#SUBRCUTINE PULSEINF IS EXPONENTIAL DECAY VERSION#/8X
#THE PULSE IS A LINEAR RISE FOLLCWED BY AN EXPONENTIAL DECAY#*
/13X=PSI = (PSIM)(T-TAUO)/(TAUM=TAU),; TAUOeLE«TeLE«TAUM,*
/13X#PST = (PSIM)EXPF(=(T=TAUM)/TAU), TAUMeLTeTeLE.TAUF,=
/13X#TAUD =%E12.5%, TAUM =#E12.5%, TAUF =#E12.5
#y, TAU =#E12.5#, PSIM =#E12.5)

292 FORMAT(1HO, 7X#NO PLASTIC DEFCRMATION OCCURS SINCE PSI NEVER #
1 #EXCEEDS 1.0%)

293 FORMAT(1HO, 7X#ERRCR IN INPUT DATA#)
ENC

WmEsEWN -

FUNCTION PSIFUNI(T)

SUBROUTINE WHICH PROVIDES RINGLOAD PROGRAM WITH VALUES OF PSI.

EXPONENTIAL DECAY VERSION,
THE PULSE IS A LINEAR RISE FCLLOWED BY AN EXPONENTIAL DECAY.

COMMON/PULSE/TO,TM, TF, TAU,PSIM
PSIFUN=0,0
IF(TeLToTCeORsT4GT4TF) RETURN
IF(TeGEaTOWANDWToLToTM) 304,305
304 PSIFUN=PSIM#(T=-TO)/(TM-TO)
RETURN
305 :zéFUN=PSIMiEXPF((TM-T)/TAU)

(sNelaNaNeNa]
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350

354

355
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SUBROUT INE PSICOEF(T,SPSI)

SUBROUTINE WHICH PROVIDES RINGLOAD PROGRAM WITH THE COEFFICIENTS
OF THE POWER SERIES EXPANSION OF PULSE SHAPE PSI.

EXPONENTIAL DECAY VERSION.
THE PULSE IS A LINEAR RISE FCLLOWED BY AN EXPONENTIAL DECAY.

INPUT
T (TIME)

ouTPUT

SPSI(N) (NTH DERIVATIVE CF PSI DIVIDED BY N FACTORIAL AND
EVALUATED AT T, FOR N = 1,243,4)

DIMENSICN SPSI(4)
COMMON/PULSE/TO,TMy TF,TAU,PSIM
DO 350 I=1,4

SPSI(I)=C.0
IF(TeLT«TOOReToGT4TF) RETURN
IF({TeGE«TO«AND+ToLT.TM) 354,355
SPSI(1)5PSIM/(TM=-TC)

RETURN

E=PSIM®EXPF((TM=T)/TAU)
SPSI(1)==-E/TAU
SPSI(2)=E/(2.0#TAUx=2)
SPSI(3)==E/(6.0%TAU®#3)
SPSI(4)=E/(24.0#TAU==4)

END
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